

Composite Highway Bridge
Design: Worked Examples

SCI (The Steel Construction Institute) is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions.

Our service spans the following five areas:

Membership

- Individual and corporate membership

Technical information

- Courses
- Publications
- Online reference tools
- Education
- Codes and standards

Construction solutions

- Sustainability
- Product development
- Research
- Engineering solutions

The Steel Construction Institute, Silwood Park, Ascot, Berkshire, SL5 7QN.
Telephone: +44 (0) 1344636525
Fax: +44 (0) 1344636570
Email: membership@steel-sci.com
For information on publications, telephone direct: +44 (0) 1344636513 or Email: publications@steel-sci.com

For information on courses, telephone direct: +44 (0) 1344636500 or Email: education@steel-sci.com

World Wide Web site: www.steel-sci.org
24×7 technical information: www.steelbiz.org

Communications technology

- Websites
- Communities
- Design tools

Assessment

- SCI assessed

Composite highway bridge design: Worked Examples

In accordance with Eurocodes and the UK National Annexes

D C ILES MSc ACGI DIC CEng MICE

[^0]© 2010 The Steel Construction Institute

Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of the Institute at a discount are not for resale by them.
Publication Number: SCI P357

ISBN-13: 978-1-85942-195-6
British Library Cataloguing-in-Publication Data.
A catalogue record for this book is available from the British Library.

FOREWORD

This publication is the second of two SCI bridge design guides that reflect the rules in the Eurocodes. It gives two worked examples, one for a multi-girder bridge and one for a ladder deck bridge. It is a companion to a publication giving general guidance on composite highway bridge design.

The guidance in this publication has been developed from earlier well-established guidance in a number of SCI bridge design guides. The previous guides referred to BS 5400 for the basis of design.

The publication was prepared by David Iles, of The Steel Construction Institute. A technical review of the examples, to confirm compliance with the Eurocode rules, was carried out by Atkins. Thanks are expressed to Chris Hendy, Rachel Jones and Jessica Sandberg, all of Atkins, for their comments.

The work leading to this publication was funded by Tata Steel ${ }^{\dagger}$.

[^1]
Contents

Page No.

FOREWORD iii
SUMMARY vi
INTRODUCTION 1
WORKED EXAMPLE 1: Multi-girder two-span bridge with integral abutments 3
WORKED EXAMPLE 2: Ladder deck three-span bridge 69
REFERENCES 129

SUMMARY

This publication presents worked examples of the detailed design of two composite highway bridges. Each bridge is formed by steel girders acting compositely with a reinforced concrete deck slab. The first example is of multi-girder form, the second is of ladder-deck form. The examples cover the principal steps in the verification of the designs in accordance with the Eurocodes, as implemented by the UK National Annexes.

The publication is complementary to SCI publication P356, Composite highway bridge design, which describes both forms of construction and presents general guidance and an introduction to the relevant detailed requirements of the Eurocodes.

INTRODUCTION

This publication presents two worked examples of the design of composite highway bridges using beam and slab construction. The evaluations of design values of actions (loads), action effects (bending moments, shears, etc.) resistances (of cross sections and of members in buckling) and limiting SLS criteria are carried out in accordance with the Eurocodes, as implemented by the UK National Annexes. Reference is made to selected documents providing non-contradictory complementary information.

References are made in the right-hand margins of the sheets to relevant clauses of the Eurocode Part, National Annex or other document. For brevity, the Eurocodes are designated as, for example, '3-1-5', meaning BS EN 1993-1-5 and its National Annex. National Annex clause numbers are all prefixed 'NA'.

The two examples are:

1. A two-span integral bridge, each span 28 m , carrying a two-lane roadway. The reinforced concrete deck acts compositely with four main girders of constant depth. The example shows the calculation of action effects (from the results of a computer global analysis) and the verification of the main girders in bending and shear. The adequacy of a bolted splice in the main girders is verified. Fatigue assessment is carried out for certain key details.
2. A three-span ladder deck bridge, spans $24.5 \mathrm{~m}, 42 \mathrm{~m}, 245 \mathrm{~m}$, also carrying a two-lane roadway. The reinforced concrete deck acts compositely with a ladder-deck configuration of two main girders, at 11.7 m centres, and cross girders at 3.5 m centres. The main girders are of variable depth. The example shows the calculation of action effects (from the results of a computer global analysis) and the verification of the main girders and cross girders in bending and shear. The adequacy of the bolted connection between main girders and cross girders is verified. Fatigue assessment is carried out for certain key details.

The detailed design of the deck slab, for local loading, is not covered in either example.

WORKED EXAMPLE 1:
 Multi-girder two-span bridge with integral abutments

Index

Section

1 Structural arrangement 5
2 Design basis 6
3 Actions on the bridge 11
4 Girder make-up and slab reinforcement 16
5 Beam cross sections 17
6 Global analysis 22
7 Design values of the effects of combined actions 27
8 Verification of bare steel girder during construction 32
9 Verification of composite girder 36
10 Longitudinal shear 44
11 Fatigue assessment 48
12 Main girder splices 54
13 Transverse web stiffeners 62
14 Bracing 67

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 3 of 64			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 2: Design basis							
	Client SCI		Made by	DCI	Date	July	2009	
			Checked by	JMS	Date	Sep	009	

2.2 Factors for combination values

Factors for combination values of actions are given by the NA to BS 1990 as:

	$\psi 0$	$\psi 1$	$\psi 2$
LM1 - TS	0.75	0.75	0
LM1 - UDL	0.75	0.75	0
Footway loads with LM1	0.4	0.4	0
LM2 Single Axle	0	0.75	0
Horizontal Forces	0	0	0
gr5 vertical forces from SV	0	0	0
vehicles			
Wind - persistent design	0.5	0.2	0
situations			
Wind during execution	0.8	-	0
Wind during execution (Fw*)	1	-	0
Thermal actions	0.6	0.6	0.5

2.3 Factors on strength

The values of the various γ_{M} partial factors

	ULS	SLS
zM0	1.00	
$\gamma_{\text {M1 }}$	1.10	
$\gamma_{\text {M2 }}$	1.25	
$\gamma_{\text {M3 }}$	1.25	1.10

The values of the partial factors for strength of concrete and reinforcement at ULS are given by the NA to BS EN $1992-1-1$ as $\gamma_{C}=1.5$ and $\gamma_{S}=1.15$.

2.4 Structural material properties

It is assumed that the following structural material grades will be used:
Structural steel: \quad S355 to EN 10025-2
Concrete: \quad C40/50 to EN 206-1
Reinforcement: B500 to EN 10080 and BS 4449
For structural steel, the value of f_{y} depends on the product standard.
(Use $355 \mathrm{~N} / \mathrm{mm}^{2}$ for $t \leq 16 \mathrm{~mm} ; 345 \mathrm{~N} / \mathrm{mm}^{2}$ for $16 \mathrm{~mm}>t \leq 40 \mathrm{~mm}$; and $335 \mathrm{~N} / \mathrm{mm}^{2}$ for $t>40 \mathrm{~mm}$)

For concrete, $f_{\text {ck }}=40 \mathrm{MPa}$
For reinforcement $f_{\mathrm{yk}}=\mathrm{N} / \mathrm{mm}^{2}$
The modulus of elasticity of both structural steel and reinforcing steel is taken as
NA to 3-1-1
2-1-1,
Table 3.1 210 GPa (as permitted by EN 1994-2).

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 6 of 64				A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 2: Design basis							
	Client SCI		Made by	DCI	Date	July	2009	
			Checked by	JMS	Date	Sep	2009	

For $t=56$ and $t_{\mathrm{s}}=1$ (see 4-2/5.4.2.2(4)), $\beta_{\mathrm{ds}}=0.258$
For $t=\infty, \beta_{\mathrm{ds}}=1$
Thus the drying shrinkage is:
At $t=56$ days $\varepsilon_{\mathrm{cd}}=0.258 \times 0.80 \times 32 \times 10^{-5}=6.60 \times 10^{-5}$
At $t=\infty \varepsilon_{\text {cd }}=0.80 \times 32 \times 10^{-5}=25.6 \times 10^{-5}$
The total shrinkage is thus:
At $t=56$ days $\varepsilon_{\mathrm{cd}}=5.8 \times 10^{-5}+6.60 \times 10^{-5}=12.4 \times 10^{-5}$
At $t=\infty \varepsilon_{\mathrm{cd}}=7.5 \times 10^{-5}+25.6 \times 10^{-5}=33.1 \times 10^{-5}$
For the modular ratio, the creep factor is calculated as for long term loading but the age at first loading is assumed to be 1 day. Thus:
$\beta\left(t_{0}\right)=\frac{1}{\left(0.1+t_{0}^{0.20}\right)}=\frac{1}{\left(0.1+1^{0.20}\right)}=0.91$

At opening to traffic ($t=56$ days) the creep coefficient is modified by the parameter

In this example, the shrinkage effects will be taken into account at their long term values where they are unfavourable. Where the effects are favourable, the lesser values at 56 days could be considered but it is conservative to neglect shrinkage in that case.

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113		Sheet 11 of 64		Rev A
	Job Title Composite highway bridges: Worked examples				
	Subject Example 1: Multi-girder two-span bridge Section 3: Actions on the bridge				
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$	Made by DCI	Date July 2009	July 2009	
		Checked by JMS	Date	Sep 2009	
Horizontal soil pressures The design value of horizontal pressure at ULS when thermal actions is either a leading or an accompanying action is: The pressure is applied to the end diaphragms as a hydrostatic pressure. AT SLS, the movement is 0.6 times characteristic, so the pressure coefficient is: $K_{0}+\left(K^{*}-K_{0}\right) \times 1.6 / 2.0=0.5+3.38 \times 0.8=3.21\left(=83 \% \text { of } K^{*}\right)$					

Long term shrinkage (restraint moments applied in uncracked regions)
Values apply at both ULS and SLS since $\gamma_{\text {Sh }}=1.0$

Stage 4 - transient actions

Traffic loads for worst hogging at intermediate support (gr5 loads)
(The effects due to gr5 loads without footway loading are greater than those due to grla, including footway loading.)

Distance from pier (m)	ULS			SLS		
0	-3621	622	499	-2682	461	370
6.3	-1139	432	348	-844	320	258
15.6	781	66	83	579	49	61
28	-269	26	-201	-199	19	-149

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113		Sheet	30			
	Job Title Composite highway bridges: Worked examples						
	Subject Example 1: Multi-girder two-span bridge Section 8: Verification of bare steel girder during						
	$\begin{aligned} & \hline \text { Client } \\ & \text { SCI } \end{aligned}$	Made by	DCI		July		
		Checked by	JMS	Date	Sep 2009		
And using the expression $k=\left[1+\frac{V_{\mathrm{eq}}^{4} L_{w}^{3}}{\pi^{4} E I_{\mathrm{z}, \mathrm{c}} d_{\mathrm{f}}^{2} \theta_{\mathrm{R}}(1-a)}\right]^{(-0,25)}$ The value of $k=0.385$ The limiting (minimum) value of k is $\left(1.7-0.7 V_{\mathrm{eq}}\right) L_{\mathrm{r}} / L_{\mathrm{w}}$ Taking $L_{\mathrm{r}}=8200$ (the longest unbraced length - this is conservative, the limit is: $(1.7-0.7 \times 0.715) \times 8.2 / 28.0=0.351$, so use $k=0.385$ Assume $1 / \sqrt{C_{1}}=1.0$ (uniform moment - conservative assumption) $\begin{aligned} U & =1.0(\text { welded section }) \\ V & =\left\{\left[4 a(1-a)+0.05 \lambda_{\mathrm{F}}^{2}+\psi_{\mathrm{a}}^{2}\right]^{0.5}+\psi_{\mathrm{a}}\right\}^{-0.5} \\ & =\left\{\left[4 \times 0.5(1-0.5)+0.05 \times 7.91^{2}+0\right]^{0.5}+0\right\}^{-0.5}=0.702 \end{aligned}$					$\begin{aligned} & \text { P356/C.4.2 } \\ & \text { P356/C.4.3 } \end{aligned}$		
Take $D \quad 1.2$ (destabilising loads)$\lambda_{\mathrm{z}} \quad=\frac{k L_{\mathrm{w}}}{i_{\mathrm{z}}} \quad=\frac{0.385 \times 28000}{128.8}=83.7$					P356/C. 1		
$\begin{aligned} & \lambda_{1}=\pi \sqrt{\frac{E}{f_{\mathrm{y}}}}=\pi \sqrt{\frac{210000}{345}}=77.5 \\ & \beta_{\mathrm{w}}=\frac{W_{\mathrm{y}}}{W_{\mathrm{pl}, \mathrm{y}}}=2.287 \times 10^{7} /\left(8237 \times 10^{6} / 345\right)=0.958 \end{aligned}$					$W_{\text {y }}$ and M_{pl} from Sheet 14		
Thus:$\bar{\lambda}_{\mathrm{LT}}=\frac{1}{\sqrt{C_{1}}} U V D \frac{\lambda_{\mathrm{z}}}{\lambda_{1}} \sqrt{\beta_{\mathrm{w}}}=1 \times 1 \times 0.702 \times 1.2 \times \frac{83.7}{77.5} \sqrt{0.958}=0.89$					P356/C. 1		
Slenderness determined from buckling analysis Alternatively, and less conservatively, slenderness could be derived from an elastic buckling analysis of the structure at the bare steel girder stage and then the value of $\bar{\lambda}_{\mathrm{LT}}$ would be given by $\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{W_{\mathrm{y}} f_{\mathrm{y}}}{M_{\mathrm{cr}}}}$ where M_{cr} is given by the analysis. A buckling analysis was not available for this example.							

Silwood Park, Ascot, Berks SL5 7ON Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113		Sheet	36 of			A
	Job Title Composite highway bridges: Worked examples						
	Subject Example 1: Multi-girder two-span bridge Section 9: Verification of composite girder						
	$\begin{aligned} & \hline \text { Client } \\ & \text { SCI } \end{aligned}$	Made by	DCI	Date	July 2009		
		Checked by	JMS	Date	Sep 2009		
$V_{\mathrm{bw}, \mathrm{Rd}}=\frac{\chi_{\mathrm{w}} f_{\mathrm{yw}} h_{\mathrm{w}} t}{\sqrt{3} \gamma_{\mathrm{M} 1}}=\frac{0.889 \times 355 \times 1000 \times 14}{\sqrt{3} \times 1.1} \times 10^{-3}=2319 \mathrm{kN}$					3-1-5/5.2		
This resistance is adequate for the maximum moment situation but requires a contribution from the flanges for the maximum shear situation.							
Maximum contribution from flanges is given by:							
$V_{\mathrm{bf}, \mathrm{Rd}}=\frac{b_{\mathrm{f}} t_{\mathrm{f}}^{2} f_{\mathrm{yf}}}{c \gamma_{\mathrm{M} 1}}\left(1-\left(\frac{M_{\mathrm{Ed}}}{M_{\mathrm{f}, \mathrm{Rd}}}\right)^{2}\right)$					3-1-5/5.4		
$c=a\left(0.25+\frac{1.6 b_{\mathrm{f}} t_{\mathrm{f}}^{2} f_{\mathrm{yf}}}{t h_{w}^{2} f_{\mathrm{yw}}}\right)=1967\left(0.25+\frac{1.6 \times 600 \times 60^{2} \times 335}{14 \times 1000^{2} \times 355}\right)=950 \mathrm{~mm}$							
$M_{\text {f,Rd }}$ is the resistance of the flanges alone (no web).							
The axial resistance of the top bars and top flange i							
And of the bottom flange is $36000 \times(335 / 1.0)=12060 \mathrm{k}$					3-1-5/5.4		
Take the lever arm between top and bottom as 1159 mm and thus							
$M_{\mathrm{f}, \mathrm{Rd}}=12060 \times 1159 \times 10^{-3}=13980 \mathrm{kNm}$							
For the design situation for maximum shear, the net axial force on the cross section is a small tensile force; no reduction is needed to $M_{\mathrm{f}, \mathrm{Rd}}$ for this axial force.							
For the maximum shear situation, $M_{\mathrm{Ed}}=11535 \mathrm{kNm}$					Sheet 25		
$M_{\mathrm{Ed}} / M_{\mathrm{f}, \mathrm{Rd}}=11535 / 13980=0.83$							
$V_{\mathrm{bf}, \mathrm{Rd}}=\frac{600 \times 60^{2} \times 335}{950 \times 1.1}\left(1-0.83^{2}\right)=692 \times(1-0.69)=215 \mathrm{kN}$							
The total shear resistance is thus:							
$V_{\mathrm{b}, \mathrm{Rd}}=2319+215=2534 \mathrm{kN}\left(\eta_{3}=2487 / 2534=0.99\right)$ Satisfactory							
9.3 Combined bending shear and axial force							
When $M_{\mathrm{Ed}}>M_{\mathrm{f}, \mathrm{Rd}}$ and when $V_{\mathrm{Ed}}>0.5 V_{\mathrm{bw}, \mathrm{Rd}}$ the design resistance to bending and axial force must be reduced for the coexisting shear force.					3-1-5/7.1		
Maximum shear with coexisting moment							
As noted above, $M_{\mathrm{Ed}} / M_{\mathrm{f}, \mathrm{Rd}}=0.83$, therefore the bending resistance does not need to be reduced for shear (instead, the shear resistance has already been reduced for coexisting moment).							
Maximum moment with coexisting shear					Sheet 24		
$V_{\mathrm{Ed}}=1528 \mathrm{kN} \quad M_{\mathrm{Ed}}=11950 \mathrm{kNm} F_{\mathrm{x}, \mathrm{Ed}}=327 \mathrm{kN}$ (axial compression)							

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 37 of 64			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 9: Verification of composite girder							
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$		Made by	DCI	Date	July	009	
			Checked by	JMS	Date	Sep	2009	

The value of $M_{\mathrm{f}, \mathrm{Rd}}$ is reduced for axial force in accordance with 3-1-5/5.4(2) by applying the factor:
$\left(1-\frac{N_{E d}}{\left(N_{\mathrm{bf}, \mathrm{Rd}}+N_{\mathrm{tf}, \mathrm{Rd}}\right)}\right)=\left(1-\frac{327}{12060+17430}\right)=0.99$
And hence $M_{\mathrm{f}, \mathrm{Rd}}=13700 \mathrm{kNm}$
Hence, since $M_{\mathrm{Ed}}<M_{\mathrm{f}, \mathrm{Rd}}(11950<13700)$, bending resistance does not need to be reduced for shear.

Note: PD 6696-2 and Hendy and Johnson ${ }^{[5]}$ suggest that, for use in 3-1-5/7.1, $M_{E d}$ should be determined as the product of the accumulated stress and the section modulus for the relevant fibre of the cross section. However, a proposed revision of EN 1994-2 would modify the wording of 4-2/6.2.2.4 to confirm that it is the total moment that should be used. For this example, in both cases the value is less than $M_{f, R d}$.

Although interaction does not need to be evaluated, the limiting combinations of M and V given by 3-1-5/5.4 and 3-1-5/7.1 are plotted below, for information. The values of maximum moment with coexisting shear and maximum shear with coexisting moment are shown on the plot. (For the different design situations $M_{p l, R d}$ and $M_{f, R d}$ are slightly different but the differences are very small.)

9.4 In sagging bending

The composite cross section is Class 1 (pna in the top flange) so the plastic resistance can be utilised.
The plastic bending resistance of the short term composite section is 13070 kNm and the total design value of bending effects is 7835 kNm , with a very small axial tensile force, so the section is satisfactory by inspection.
It can also be seen that the stresses calculated elastically, taking account of construction in stages are also satisfactory, as follows:

From Sections 7.1 and 7.2, the design value of stresses are as shown below.

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 39 of 64			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 9: Verification of composite girder							
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$		Made by	DCI	Date	July	009	
			Checked by	JMS	Date	Sep	2009	

Global stresses due to permanent loads, incuding shrinkage are $116 \mathrm{~N} / \mathrm{mm}^{2}$ in the top rebars. The tensile stress including the effect of tension stiffening
are: $\sigma_{\mathrm{s}}=\sigma_{\mathrm{s}, 0}+\frac{0.4 f_{\mathrm{ctm}}}{\alpha_{\mathrm{st}} \rho_{\mathrm{s}}}$
$\alpha_{\text {st }}=\frac{A I}{A_{\mathrm{a}} I_{\mathrm{a}}}=\frac{94250 \times 28450}{70000 \times 15620}=2.452$
$\rho_{\mathrm{s}}=A_{\mathrm{s}} / A_{\mathrm{ct}}=24250 /(3700 \times 250)=0.0262$ (i.e. $\left.2.62 \%\right)$
$\sigma_{\mathrm{s}}=116+\frac{0.4 \times 3.5}{2.452 \times 0.0262}=140 \mathrm{~N} / \mathrm{mm}^{2}$
From Table 7.2, maximum bar spacing $=300 \mathrm{~mm}>150 \mathrm{~mm}$ provided
\therefore provision is satisfactory

9.6 Limiting stresses at SLS

At the pier, the stresses in the cracked section are:

The primary stresses due to shrinkage do not need to be added (see 4-2/7.2.1(4)) and all stresses are less than $f_{y} / \gamma_{M, \text { ser }}\left(=345 \mathrm{~N} / \mathrm{mm}^{2}\right.$ for top flange, $335 \mathrm{~N} / \mathrm{mm}^{2}$ for bottom flange) and $k_{3} f_{\text {sk }}(=0.8 \times 500=400 \mathrm{MPa})$.
At midspan, the SLS stresses in the steel are satisfactory by inspection (see stresses at ULS on sheet 37) even with the addition of the primary shrinkage stresses (see sheet 17). There is no limit on concrete stress for the characteristic combination, for class XC exposure. For the quasi-permanent combination, the concrete stress limit (for linear creep) is $k_{2} f_{\mathrm{ck}}(=0.45 \times 40=18 \mathrm{MPa})$ and for that criterion the situation is also satisfactory by inspection.

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113	Sheet	43 of		Rev A				
	Job Title Composite highway bridges: Worked examples								
	Subject Example 1: Multi-girder two-span bridge Section 10: Longitudinal shear								
	$\begin{aligned} & \hline \text { Client } \\ & \text { SCI } \end{aligned}$	Made by DCI	Date July 2009 Date Sep 2009						
		Checked by JMS							
The SLS shear flows in Section 10.4 are all between 72% and 77% of the ULS values and since the ULS peak shear flows are all less than the ULS design resistances, the SLS requirement is satisfactory by inspection. 10.7 Transverse reinforcement Consider the transverse reinforcement required to transfer the full shear resistance of the studs at the pier, i.e. $1630 \mathrm{kN} / \mathrm{m}$. For a critical shear plane around the studs (type b-b in 4-2/Figure 6.15 and shown dotted above) the shear resistance is provided by twice the area of the bottom bars. The shear force to be resisted is given by $4-2 /(6.21)$ as $1630 / \cot \theta$, Take $\cot \theta=1$, hence required resistance $=1630 \mathrm{kN} / \mathrm{m}$ Assume B20 bars at 150 mm spacing: $\text { Resistance }=A_{\mathrm{s} f} f \mathrm{y}_{\mathrm{d}} / s_{\mathrm{f}}=(2 \times 314) \times(500 / 1.15) / 150 \times 10^{-3}=1821 \mathrm{kN} / \mathrm{m}$ The transverse bars are adequate. (If they were also required to provide resistance to transverse sagging moment, the resistance would need to be adequate for coexisting combined effects.) The underside of the heads of the studs need to be at least 40 mm above the transverse bars. In this case an overall stud height of 175 mm should be sufficient, if the haunches are only 50 mm deep.				$2 \begin{aligned} & 4-2 / 6.6 .6 .1 \\ & 2-1-1 / 6.2 .4 \\ & 2-1-1 / 6.2 .4 \\ & 4-2 / 6.6 .5 .4\end{aligned}$					

Silwood Park, Ascot, Berks SL5 $70 N$ Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No.	BCR113		Sheet	47 of		Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 11: Fatigue assessment							
	Client SCI		Made by	DCI	Date	July 2009		
			Checked by	JMS	Date	Sep 2009		

For $N_{\text {Obs }}=1 \times 10^{6}$, medium distance traffic and straight bars $\left(k_{2}=9\right): \bar{Q}=0.94$ and $\lambda_{\mathrm{s}, 2}=\bar{Q}_{k_{2}} \sqrt{\frac{N_{\text {Obs }}}{2.0}}=0.94 \sqrt[9]{\frac{1.0}{2.0}}=0.87$

For 120 year design life:
$\lambda_{\mathrm{s}, 3}=\sqrt[k_{2}]{\frac{N_{\text {Years }}}{100}}=\sqrt[9]{\frac{120}{100}}=1.020$
For 2 slow lanes:
$\lambda_{\mathrm{s}, 4}=\sqrt[k_{2}]{\frac{\sum N_{\mathrm{Obs}, i}}{N_{\mathrm{Obs}, 1}}}=\sqrt[9]{\frac{2.0}{1.0}}=1.080$
For road surface of good roughness $\phi_{\text {fat }}=1.2$
Thus $\lambda=1.2 \times 0.94 \times 0.87 \times 1.02 \times 1.08=1.08$
$\Delta \sigma_{\mathrm{E}}=1.08 \times 1.0 \times|146-128|=1.08 \times 18=19 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma_{\mathrm{F}, \text { fat }} \Delta \sigma_{\mathrm{S}, \mathrm{equ}}=1.0 \times 19=19 \mathrm{~N} / \mathrm{mm}^{2}$
For straight bars, $\Delta \sigma_{\text {Rsk }}=162.5 \mathrm{MPa}$
$\frac{\Delta \sigma_{\text {Rsk }}}{\gamma_{\mathrm{s}, \text { fat }}}=\frac{162.5}{1.15}=141 \mathrm{~N} / \mathrm{mm}^{2}>22 \mathrm{~mm}^{2}$ OK
Note: If the bars were bent, as they might be at the abutment, the value of $\Delta \sigma_{\text {Rsk }}$ would be significantly reduced - see 2-1-1/Table 6.3.N.

11.3 Assessment of shear connection

The design value of the stress range in shear studs is given as $\gamma_{\mathrm{f}} \Delta \tau_{\mathrm{E} 2}$ where
$\Delta \tau_{\mathrm{E}, 2}=\lambda_{v} \Delta \tau$
In which $\Delta \tau$ is the range of shear stress in the cross section of the stud.
EN 1994-2 refers to EN 1993-2 for the value of γ_{ff}, which is given by the NA as 1.0
The value of $\lambda_{\mathrm{v}}=\lambda_{\mathrm{v}, 1} \lambda_{\mathrm{v}, 2} \lambda_{\mathrm{v}, 3} \lambda_{\mathrm{v}, 4}$
Since the span is less than $100 \mathrm{~m}, \lambda_{\mathrm{v}, 1}=1.55$

4-2/6.8.7.2

3-2/NA. 2.35

4-2/6.8.6.2
6.8.6.2(4)
6.8.6.2(4)

The value of λ_{2}, λ_{3} and λ_{4} are calculated in the same manner as for structural steel but with an exponent of $1 / 8$ rather than $1 / 5$
Hence $\lambda_{2}=\left(\frac{260}{480}\right) \times\left(\frac{1.0}{0.5}\right)^{0.125}=0.591$
$\lambda_{3}=\left(\frac{120}{100}\right)^{0.125}=1.023$

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 48 of 64			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 11: Fatigue assessment							
	$\begin{aligned} & \hline \text { Client } \\ & \text { SCI } \end{aligned}$		Made by	DCI	Date July 2009	July 2009		
			Checked by	JMS	Date	Sep 2009		
The value of λ_{4} depends on the relative magnitude of the stress range due to passage of FLM3 in the second lane and is given by:$\lambda_{4}=\left(1+\frac{\text { effect in lane } 2}{\text { effect in lane } 1}\right)^{0.125}$								

Shear at pier

The range of vertical shear force at the pier is 271 kN and the ratio of lane $2 /$ lane 1
Sheet 22 effects is 0.867 .

At the pier, the studs are 19 mm diameter, in rows of 3 at 150 mm spacing
Thus the stress range $=$ Range of vertical shear $\times A \bar{z} / I_{\mathrm{y}} \times 0.150 /\left(3 \times \pi d^{2} / 4\right)$

$$
A \bar{z} / l_{\mathrm{y}}=0.805 \mathrm{~m}^{-1}
$$

Stress range $\Delta \tau=271 \times 0.805 \times 0.150 /(3 \times 284)=38 \mathrm{~N} / \mathrm{mm}^{2}$
$\lambda_{4}=(1+0.867)^{0.125}=1.081$
$\lambda_{\mathrm{v}}=1.55 \times 0.591 \times 1.023 \times 1.081=1.013$
$\Delta \tau_{\mathrm{E}, 2}=1.013 \times 38=39 \mathrm{~N} / \mathrm{mm}^{2}$
The reference value of fatigue strength for a shear stud is $\Delta \tau_{\mathrm{c}}=90$
The partial factor on fatigue strength $\gamma_{\mathrm{Mf}}=1.1$.
The design strength is thus $90 / 1.1=81 \mathrm{~N} / \mathrm{mm}^{2}>39 \mathrm{~N} / \mathrm{mm}^{2} \mathrm{OK}$
Additionally, since the flange is in tension, the interaction with normal stress in the steel flange must be verified, using:
$\frac{\gamma_{\mathrm{Ff}} \Delta \sigma_{\mathrm{E}, 2}}{\Delta \sigma_{\mathrm{c}} / \gamma_{\mathrm{Mf}}}+\frac{\gamma_{\mathrm{Ff}} \Delta \tau_{\mathrm{E}, 2}}{\Delta \tau_{\mathrm{c}} / \gamma_{\mathrm{Mf}, \mathrm{s}}} \leq 1.3$
With $\Delta \sigma_{\mathrm{c}}=80$.
Coexistent stresses should be used but conservatively one can consider the most onerous values for each of $\Delta \sigma_{c}$ and $\Delta \tau_{c}$
$\frac{1.0 \times 9}{80 / 1.1}+\frac{1.0 \times 39}{90 / 1.1}=0.60 \quad \mathrm{OK}$

Shear at splice

The range of vertical shear force at the splice is 99 kN and the ratio of lane $2 /$ lane 1 effects is 0.909

At the splice, the studs are 19 mm diameter, in rows of 2 at 150 mm spacing
Stress range $=99 \times 0.836 \times 0.150 /(2 \times 284)=22 \mathrm{~N} / \mathrm{mm}^{2}$

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113	Sheet	54 of	64		A
	Job Title Composite highway bridges: Worked examples						
	Subject Example 1: Multi-girder two-span bridge Section 12: Main girder splices						
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$		Made by DCI	Date July 2009	July 2009		
			Checked by JMS	Date Sep 2009			
ULS bearing resistance per bolt is given by:$F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} \alpha_{\mathrm{b}} f_{\mathrm{u}} d t}{\gamma_{\mathrm{M} 2}}=$							
Bolt spacings, for determination of factors k_{1} and α_{b}							
In line of force: $e_{1}=50 \mathrm{~mm}, p_{1}=65 \mathrm{~mm}$							
Perpendicular to force: $e_{2}=60 \mathrm{~mm}, p_{2}=75 \mathrm{~mm}$							
Since $f_{\text {ub }}>f_{\mathrm{u}}, \alpha_{\mathrm{b}}=\alpha_{\mathrm{d}}($ but $\leq 1)$							
For end bolts: $\alpha_{\mathrm{d}}=e_{1} / 3 d_{0}=50 /(3 \times 26)=0.64$							
For inner bolts: $\alpha_{\mathrm{d}}=p_{1} / d_{0}-1 / 4=65 /(3 \times 26)-0.25=0.58$							
For edge bolts k_{1} is the smaller of $2.8 e_{2} / d_{0}-1.7$ and 2.5							
$k_{1}=\min (2.8 \times 60 / 26-1.7 ; 2.5)=2.5$							
In the upper cover plates there is no 'inner' line of bolts (in the direction of force) and for the flange and lower cover, the mean value of p_{2} that would apply is sufficient to ensure that $k_{1}=2.5$							
The value of f_{u} is given by the product standard for S355 plates as $470 \mathrm{kN} / \mathrm{mm}^{2}$					EN 10025-2		
Conservatively, using $\alpha_{\mathrm{b}}=0.58$ the resistance of the bolt in 20 mm covers is:							
$F_{\mathrm{b}, \mathrm{Rd}}=\frac{2.50 \times 0.58 \times 470 \times 24 \times 20}{}=262 \mathrm{kN}$							
Bearing resistance of group, with double covers $=20 \times 2 \times 262=10480 \mathrm{kN}$							
The ULS bearing resistance is adequate and the connection resistance is determined by the shear resistance of the bolts. Note that, on the span side, 20 mm packing is used. This would reduce the bearing/shear resistance on the upper shear plane by about 15% (see 3-1-8/3.6.1(12)) but the resistance would still be adequate.							
Resistance at SLS							
SLS slip resistance of group $=20 \times 180=3600 \mathrm{kN}>3312 \mathrm{kN}$ satisfactory							
Web splice							
The splice has a single column of 12 bolts at 75 mm spacing							
where r_{i} is the distance of each bolt from the centre of the group and $r_{\max }$ is the distance of the furthest bolt.							
Here, the modulus $=1950 \mathrm{~mm}$							
The extra moment due to the shear $=$ shear force \times eccentricity of group from the centreline of the splice							

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 57 of 64		Rev	A
	Job Title Composite highway bridges: Worked examples						
	Subject Example 1: Multi-girder two-span bridge Section 12: Main girder splices						
	$\begin{aligned} & \hline \text { Client } \\ & \text { SCI } \end{aligned}$		Made by DCI	Date July 2009	July 2009		
			Checked by JMS	Date Sep 2009			
From buckling curve $\mathrm{a}, \chi=0.98$, so the limiting stress $=0.98 \times 355 / 1.1=316 \mathrm{~N} / \mathrm{mm}^{2}$, which is satisfactory. The spacing also complies with the limit of $14 t$ ($=140 \mathrm{~mm}$). The shear stress is: $417 \times 10^{3} /(10 \times 925)=45 \mathrm{~N} / \mathrm{mm}^{2}$ This is satisfactory and is low enough that the resistance to direct stress does not need to be reduced.							

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 61 of 64			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 13: Transverse web stiffeners							
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$		Made by	DCI	Date	July	2009	
			Checked by	JMS	Date	Sep	009	

No verification of the interaction of these vertical stresses with longitudinal stresses and shear stresses in the web is called for in EN 1993.

13.3 Bearing at loaded end of the stiffener

There is no explicit verification called for at the interface between the flange and the effective bearing stiffener but it should nevertheless be verified.

Web/flange interface

If the web is not fitted to the flange (which is the usual case) the force must be transferred through the weld. To transfer the full strength of the web, consider the strength of fillet welds loaded transversely to their length.
Using the simplified method of 3-1-8/4.5.3.3 and neglecting the longitudinal force on the weld, the resistance of a 6 mm throat fillet weld is:

$$
F_{\mathrm{w}, \mathrm{Rd}}=a \frac{f_{u} / \sqrt{3}}{\beta_{w} \gamma_{M 2}}=6 \times \frac{470 / \sqrt{3}}{0.9 \times 1.25}=1450 \mathrm{~N} / \mathrm{mm}
$$

As noted above, the maximum utilisation in the web is 0.41 , which is equivalent to a vertical stress of $141 \mathrm{~N} / \mathrm{mm}^{2}$. The design force in the web at that position is therefore $141 \times 14=1974 \mathrm{~N} / \mathrm{mm}$. The two 6 mm welds are adequate.

Stiffener/flange interface

The ends of the 25 mm flats should be fitted and welded to the flange, because it is impractical to provide a sufficiently heavy fillet weld. The fillet weld must then be checked for fatigue, as follows.
Range of reaction due to passage of FLM3 $=293 \mathrm{kN}$ (lane 1) and 251 kN (Lane 2)
The stress range at the tip of the flat due to this range is:
$293000 / 17610+2930 / 1100=20 \mathrm{~N} / \mathrm{mm}^{2}$
The force per unit length $=25 \times 20=500 \mathrm{~N} / \mathrm{mm}$
The fatigue resistance should be checked at the toe of the weld (on the stiffener) and at the root of the weld.

At the toe of the weld, the detail category is 71 (Table 8.1, for 60 mm flange) and the stress range is satisfactory by inspection.

At the root of the weld, the stress range is given by dividing the force/unit length by the weld throat (see 3-1-9/Figure 5.1) and the detail category is 36 (3-1-9/Table 8.5, detail 3)

Since there is no longitudinal or transverse shear force, for a 6 mm throat fillet weld, $\sigma_{\mathrm{wf}}=\sigma_{\perp \mathrm{f}}=500 /(2 \times 6)=42 \mathrm{~N} / \mathrm{mm}^{2}$

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113		Sheet	63 of		Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 14: Bracing							
	$\begin{array}{\|l\|} \hline \text { Client } \\ \text { SCI } \end{array}$		Made by	DCI	Date July 2009			
			Checked by	JMS	Date Sep 2009			

14 Bracing

The configuration of the intermediate bracing systems between girder pairs is as shown below.

Assume the use of $120 \times 120 \times 12$ angle sections.
Consider requirements for stiffness and strength
To perform as a fully effective intermediate restraint to the bottom flange adjacent to the support, the stiffness needs to be at least the value given by:
$C_{\mathrm{D}}=\frac{4 N_{\mathrm{E}}}{L}=\frac{4 \pi^{2} E I}{L^{3}}$
where
$I \quad$ is the lateral second moment of area of the effective bottom flange (in the simplified method considered in Section 9.1)
$L \quad$ is the length of flange restrained by the bracing
$C_{\mathrm{D}}=\frac{4 \pi^{2} \times 210000 \times 1.08 \times 10^{9}}{5900^{3}}=44 \mathrm{kN} / \mathrm{mm}$

The stiffness of the bracing system can be determined from a simple plane frame model that reflects the actual geometry, including eccentric end connections, and the effective section of the intermediate stiffeners or a value can be determined from the simple triangulated system below:

(The use of a diagonal system between top and bottom flanges will generally give a greater flexibility than that with the more detailed plane frame model and the shallower inclination of the angles.)

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 64 of 64			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 1: Multi-girder two-span bridge Section 14: Bracing							
	Client SCI		Made by	DCI	Date	July	2009	
			Checked by	JMS	Date	Sep	009	

For a unit force, the lateral displacement is given by consideration of equilibrium and axial stiffness of bracing members as:
$\delta=\frac{(1 / \cos \phi) \times D}{E A_{\text {brace }}} \times\left(\frac{1}{\cos \phi}\right)+\frac{(1 \times \tan \phi) H}{E A_{\text {stiff }}} \times\left(\frac{1}{\tan \phi}\right)$
$A_{\text {brace }}=2750 \mathrm{~mm}^{2}$ (for a $120 \times 120 \times 12$ angle)
$A_{\text {stiff }}=9043 \mathrm{~mm}^{2}$
$\delta=\frac{3860}{210 \times 2750 \times 0.959^{2}}+\frac{1100}{210 \times 9043}=0.00785 \mathrm{~mm} / \mathrm{kN}$
Hence stiffness $=1 / 0.00785=127 \mathrm{kN} / \mathrm{mm}-$ satisfactory
The strength of the bracing system must be sufficient to restrain the lateral force $F_{\text {Ed }}$.
Since $L_{\mathrm{k}}=1196 \mathrm{~mm}<1.2 \ell=1.2 \times 5900=6980 \mathrm{~mm}$, the restraint force is given by:
$F_{\mathrm{Ed}}=\frac{N_{\mathrm{Ed}}}{100}$
For the value of N_{Ed}, use the stress in the bottom flange at the pier and multiply by the area of the effective flange in the simplified model for buckling resistance.

$$
F_{\mathrm{Ed}}=\frac{277 \times 38470}{100} \times 10^{-3}=107 \mathrm{kN}
$$

The buckling resistance of the 3860 mm diagonal is easily adequate for this force and two-bolt end connections will also be adequate.

WORKED EXAMPLE 2:

Ladder deck three-span bridge

Index

Section

Page No.

1 Structural arrangement
 71

2 Design basis 72
3 Actions on the bridge 74
4 Girder make-up and slab reinforcement 77
5 Beam cross sections 79
6 Global analysis 85
7 Design values of the effects of combined actions 91
8 Verification of bare steel girder during construction 95
9 Verification of composite girder 101
10 Longitudinal shear 111
11 Fatigue assessment 116
12 Cross girder to main girder connection 121

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No.	BCR113		Sheet	of	58	Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 2: Design basis							
	Client SCI		Made by	DCI	Date	July 2009		
			Checked by	RJ	Date	Sep 2009		

For concrete, it is assumed that the average age at first loading is the same as in Example 1 and thus the values of the modulus of elasticity of the concrete and long-term shrinkage strain are:

	Short term	Long term	Shrinkage (long-term)
E_{cm}	35 GPa	12.6 GPa	
Modular ratio	$n_{0}=6.0$	$n_{\mathrm{L}}=16.7$	$n_{\mathrm{L}}=15.4$
Drying shrinkage			$\varepsilon_{\mathrm{cd}}=33.1 \times 10^{-5}$

In this example, the shrinkage effects will be taken into account at their long term values where they are unfavourable. Where the effects are favourable, lesser values at 56 days could be considered but it is conservative to neglect shrinkage in that case.

Silwood Park, Ascot, Berks SL5 $70 N$ Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113		of	58 Rev	A
	Job Title Composite highway bridges: Worked examples				
	Subject Example 2: Ladder deck three-span bridge Section 4: Girder make-up and slab reinforcement				
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$	Made by DCI	Date July 2009	July 2009	
		Checked by RJ	Date	Sep 2009	
4.2 Cross girders Intermediate cross girders Overall depth 750 mm at the ends, 896 mm at the centre Flanges: 300×25 Web: 15 mm The web is unstiffened, except possibly at the cross girder mid-span if the cross girders need to be braced for the construction condition. Pier crosshead At the intermediate supports, a 2000 mm deep crosshead girder is provided, with jacking stiffeners close to the main girders for bearing replacement. The design of the crosshead is not covered in the example.					

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 10 of 58			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 5: Beam cross sections							
	Client SCI		Made by	DCI	Date	July 2009		
			Checked by	RJ	Date	Sep 2009		

For the span girder, the values for the elastic moduli of the gross section will be used for build up of stresses in the span girder during construction, since classification for the total stresses will be at least Class 3.

For the pier section, gross section properties will be used for the build up of bending stresses (since the section is Class 3 in bending) but an effective area will be used the effects of any axial compression at this stage, since the bare section is Class 4 in compression (for which $A_{\text {eff }}=105000 \mathrm{~mm}^{2}$)

Bare steel cross sections - effective section properties in bending

The values for the effective section moduli are needed for verification of the span girder at the bare steel stage (when the cross section is Class 4 in bending).

The effective breadth of the Class 4 web is given by Table 4.1, with:

3-1-5/4.4

Value of M_{pl} calculated using $f_{\mathrm{y}} / \gamma_{\text {Mo }}$ values for steel, $0.85 f_{\mathrm{ck}} / \gamma_{\mathrm{C}}$ for concrete

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 13 of 58			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 5: Beam cross sections							
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$		Made by	DCI	Date	July	009	
			Checked by	RJ	Date	Sep	009	

The release of the restraint moments is applied along the span, in the uncracked regions, as a separate loadcase. Since the girder depth varies along the span, the value of the restraint moment will vary along the span. For simplicity, a uniform 'average' value has been applied to the model in this example.

Note that the omission of restraint moments in cracked regions is not mentioned in EN 1994-2 but the view has been taken that the omission permitted for shrinkage (see EN 1994-2, 5.4.2.2(8)) may be used for the calculation of secondary effects of temperature difference.

Shrinkage

For complete verification, shrinkage effects should be calculated at the time of opening to traffic and at the end of the service life and the more onerous values used. Here, primary and secondary effects are calculated only for the long-term situation (the values are greater than those at opening) and where the total effects of shrinkage are advantageous, they are neglected.
The characteristic value of shrinkage strain is given on Sheet 3 as $\varepsilon_{\mathrm{cd}}=33.1 \times 10^{-5}$ and the modular ratio is $\eta_{\mathrm{L}}=15.4$. (This is very close to the value for long-term effects generally and for determining the secondary effects, the one set of long-term properties will be used for both.)

For a fully restrained section, the restraint force and moment in the span girder, inner beam, due to the characteristic values of shrinkage strain are given by:

		Centre of force		moment	
	Strain	Force (kN)	Below top	Above NA	(kNm)
Slab	-0.000331	-8049	125	329	-2647

The release of the restraint moments is applied along the span, in the uncracked regions, as a separate loadcase. Since the girder depth varies along the span, the value of the restraint moment will vary along the span. For simplicity, a uniform 'average' value has been applied to the model in this example.

Hence the primary effects are:

		Restraint		Release of restraint	
	W (steel units)	$\left(\varepsilon_{\mathrm{cd}} E_{\mathrm{cm}}\right)$	Bending (M / W)	Axial (F / A)	Total
Top of slab	$1.22 \mathrm{E}+08$	4.5	-1.4	-2.6	0.5
Bottom of slab	$2.72 \mathrm{E}+08$	4.5	-0.6	-2.6	1.3
Top of top flange	$2.72 \mathrm{E}+08$	0.0	-9.7	-40.0	-49.7
Bottom flange	$-5.56 \mathrm{E}+07$	0.0	47.6	-40.0	7.6

(Area $=201391 \mathrm{~mm}^{2}$, steel units)

For the above calculation, section properties for the full width of slab are used.

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 16 of 58			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 6: Global analysis							
	$\begin{array}{\|l\|l} \text { Client } \\ \text { SCI } \end{array}$		Made by	DCI	Date		009	
			Checked by		Date		009	

Because shear lag effects are automatically accounted for in the global analysis model, the moments and forces per beam thus depend on the 'actual' shear lag rather than on any notional pattern of shear lag, such as that given by the rules in EN 1994-2.

The extracted effects on each main girder section (as defined above) were combinations of moment and axial force. The axial forces arise mainly as a result of the edge beam being modelled separately but also as a result of unequal loading on the two main girders (there is a small longitudinal shear across the bridge centreline when the loading is not symmetrical).

The application of the extracted moment plus axial force on the effective cross sections (allowing for shear lag) is a realistic combination of effects on those sections. The variation of axial force in the edge beam gives rise to (relatively small) additional longitudinal shear which can be taken into account in verifying the shear connection (see Section 10.1)

6.2 Construction stages

For simplicity, it is presumed that the deck will be concreted in three stages - the whole of span 1 , followed by the whole of span 3 , followed by the whole of span 2. The edge beams will be concreted after span 2 . Separate analytical models are therefore provided for:

Stage 1 All steelwork, wet concrete in span 1
Stage 2 Composite structure in span 1 (long-term properties), wet concrete in span 3
Stage 3 Composite structure in spans $1 \& 3$, wet concrete in span 2
Stage 4 Composite structure in both spans (long-term properties)
Stage 5 Composite structure (short term properties)
(For simplicity, the weight of the edge beams is applied to the stage 4 model, which includes the long-term properties of the edge beams, rather than introduce another model. The difference between the two approaches is negligible, in relation to the design of the main beams.)
A further model, a modification of Stage 3, without the wet slab, was analysed to determine the rotational stiffness of the beams at that stage.

6.3 Analysis results

The following results are for design values of actions, i.e. after application of appropriate partial factors on characteristic values of actions, except for the individual load cases for shrinkage and temperature difference (for which characteristic values are given).

For construction loading, results are given for the total effects at each of the construction stages. For traffic loading the results are given for the combination of traffic and pedestrian loading for worst bending effects at two locations - at an intermediate support and at the middle of the central span. For verification of buckling resistance adjacent to the intermediate support, additional results were extracted for coexistent effects at the position of the first cross girder in the central span.

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113		Sheet	20 of		Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 6: Global analysis							
	Client SCI		Made by	DCI	Date	July 2009		
			Checked by	RJ	Date	Sep 2009		

For consideration of the effects on the bolted end connection, the values at the first and second cross girders adjacent to the pier and the middle cross girder are:

	CG8			CG9			CG13		
	M_{y}	F_{x}	F_{z}	M_{y}	F_{x}	F_{z}	M_{y}	F_{x}	F_{z}
Stage 1	-19	10	16	-10	7	15	0	0	16
Stage 2	-1	-4	0	0	1	0	0	0	0
Stage 3	-86	40	180	-27	11	180	-17	1	180
Stage 4	-106	29	99	-91	29	113	-68	-26	108
Construction	-212	75	295	-128	48	308	-85	-25	304
Gr1 traffic (for max shear)	-436	49	901	-281	-24	843	-201	-187	806
Gr5 traffic(for max shear)	-447	94	933	-276	-22	879	-184	-239	859
Total (gr5)	-659	169	1228	-404	26	308	-269	-264	1163

CALCULATION SHEET

Client SCI	Made by \quad DCI	Date	July 2009
	Checked by	RJ	Date

Assume $1 / \sqrt{C_{1}}=1.0$ (uniform moment - conservative assumption)
$U \quad=1.0$ (welded section)
$V=\left\{\left[4 a(1-a)+0,05 \lambda_{\mathrm{F}}{ }^{2}+\psi_{\mathrm{a}}{ }^{2}\right]^{0,5}+\psi_{\mathrm{a}}\right\}^{-0,5}$,
$=\left\{\left[4 \times 0.4(1-0.44)+0.05 \times 7.43^{2}+0.12^{2}\right]^{0,5}-0.12\right\}^{-0,5}=0.741$
Take $D \quad 1.2$ (destabilising loads)
$\lambda_{\mathrm{z}}=\frac{k L_{\mathrm{w}}}{i_{\mathrm{z}}}=\frac{0.209 \times 42000}{212.1}=41.4$
$\lambda_{1} \quad=\pi \sqrt{\frac{E}{f_{\mathrm{y}}}}=\pi \sqrt{\frac{210000}{345}}=77.5$
$\beta_{\mathrm{w}}=\frac{W_{\mathrm{y}}}{W_{\mathrm{pl}, \mathrm{y}}}=\frac{3.970 \times 10^{7}}{15110 \times 10^{6} / 345}=0.906\left(\right.$ effective section modulus $\left.W_{\mathrm{y}}\right)$
Thus:
$\bar{\lambda}_{\mathrm{LT}}=\frac{1}{\sqrt{C_{1}}} U V D \frac{\lambda_{\mathrm{z}}}{\lambda_{1}} \sqrt{\beta_{\mathrm{w}}}=1 \times 1 \times 0.741 \times 1.2 \times \frac{41.4}{77.5} \sqrt{0.906}=0.45$

Slenderness derived from buckling analysis

Alternatively and less conservatively, slenderness could be derived from an elastic buckling analysis of the structure at the bare steel girder stage and then the value of $\bar{\lambda}_{\mathrm{LT}}$ would be given by $\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{W_{\mathrm{y}} f_{\mathrm{y}}}{M_{\mathrm{cr}}}}$
where $M_{\text {cr }}$ is given by the analysis.

8.3 Reduction factor

Since $h / b<2$, use buckling curve c, $\alpha_{\mathrm{LT}}=0.49$

$$
\phi_{\mathrm{LT}}=0.5\left[1+\alpha_{\mathrm{LT}}\left(\bar{\lambda}_{\mathrm{LT}}-0.2\right)+\bar{\lambda}_{\mathrm{LT}}^{2}\right]=0.5\left[1+0.49(0.45-0.2)+0.45^{2}\right]=0.66
$$

Hence
$\chi_{\mathrm{LT}}=1 /\left(\phi_{\mathrm{LT}}+\sqrt{\phi_{\mathrm{LT}}^{2}-\bar{\lambda}_{\mathrm{LT}}^{2}}\right)=1 /\left(0.66+\sqrt{0.66^{2}-0.45^{2}}\right)=0.875$

8.4 Verification

$$
\begin{aligned}
& M_{\mathrm{b}, \mathrm{Rd}}=\frac{\chi W_{\mathrm{el}} f_{\mathrm{y}}}{\gamma_{\mathrm{M} 1}}=\frac{0.875 \times 3.970 \times 10^{7} \times 345}{1.1} \times 10^{-6}=10900 \mathrm{kNm} \\
& M_{\mathrm{Ed}}=121-584+4371=3908 \mathrm{kNm}(\text { Sheet } 17)<M_{\mathrm{b}, \mathrm{Rd}}=10900 \mathrm{kNm}-\mathrm{OK}
\end{aligned}
$$

P356/C.4.2 and C.4.3

P356/C. 1
W_{y} and M_{pl} from Sheets 9 and 10

3-2/ 6.3.2.2
3-1-1/ 6.3.2.2
3-1-1/
NA. 2.16

3-1-1/6.3.2.1

Silwood Park, Ascot, Berks SL5 $70 N$ Telephone: (01344) 636525 Fax: (01344) 636570	Job No.	BCR113	Sheet 29	of 58		A
	Job Title Composite highway bridges: Worked examples					
	$\begin{array}{ll}\text { Subject } & \text { Example 2: Ladder deck three-span bridge } \\ & \text { Section 8: Verification of bare steel girder during construction }\end{array}$					

CALCULATION SHEET

Client SCI	Made by	DCI	Date	July 2009
	Checked by	RJ	Date	Sep 2009

8.6 Reduction factor

Since $h / b>2$, use buckling curve d, $\alpha_{\mathrm{LT}}=0.76$
$\phi_{\mathrm{LT}}=0.5\left[1+\alpha_{\mathrm{LT}}\left(\bar{\lambda}_{\mathrm{LT}}-0.2\right)+\bar{\lambda}_{\mathrm{LT}}^{2}\right]=0.5\left[1+0.76(2.18-0.2)+2.18^{2}\right]=3.63$
3-2/ 6.3.2.2
3-1-1/ 6.3.2.2
3-1-1/
NA. 2.16
Hence
$\chi_{\mathrm{LT}}=1 /\left(\phi_{\mathrm{LT}}+\sqrt{\phi_{\mathrm{LT}}^{2}-\bar{\lambda}_{\mathrm{LT}}^{2}}\right)=1 /\left(3.63+\sqrt{3.63^{2}-2.18^{2}}\right)=0.153$

8.7 Verification

$M_{\mathrm{b}, \mathrm{Rd}}=\frac{\chi W_{\mathrm{el}} f_{\mathrm{y}}}{\gamma_{\mathrm{M} 1}}=\frac{0.153 \times 8.273 \times 10^{6} \times 345}{1.1} \times 10^{-6}=397 \mathrm{kNm}$
$M_{\mathrm{Ed}}=48+523=571 \mathrm{kNm}$ (Sheet 19) $>M_{\mathrm{b}, \mathrm{Rd}}=397 \mathrm{kNm}$ - Not satisfactory
Consider pairing the cross girders together with channel bracing at their mid-span. This is then classed as a beam with a central torsional restraint.

8.8 Verification for paired cross girders

From global analysis, it is determined that the torsional flexibility of the central restraint is $\theta_{\mathrm{R}}=4.73 \times 10^{-11} \mathrm{rad} / \mathrm{Nmm}$

Using the same values of λ_{F} and a as before, the value of $V_{\text {eq }}$ is needed to calculate k.
For a bi-symmetric section, the value of $V_{\text {eq }}$ may be taken as equal to V.
Thus:
$V_{\text {eq }}=0.811$
Then the stiffness parameter $V_{\mathrm{eq}}{ }^{4} L_{\mathrm{w}}{ }^{3} /\left[E I_{\mathrm{z}, \mathrm{c}} \theta_{\mathrm{R}} d_{\mathrm{f}}^{2}(1-a)\right]=3270$ and thus $k=0.494$
Consider whether the cross girder would then buckle into two half waves, which is indicated by the value of the 'arrow' on the appropriate central restraint curve (see Figure C. 1 in P356)
The value of k at the position of the arrow is given by:
P356/C.4.5
$k=\left[\frac{1+\pi^{2} \alpha}{4\left(1+4 \pi^{2} \alpha\right)}\right]^{0.25}$
Where $\alpha=\frac{V_{\mathrm{eq}}{ }^{4}}{\pi^{2}\left(1-V_{\mathrm{eq}}{ }^{4}\right)}$ for $V_{\mathrm{eq}} \leq 0.999$
$\alpha=\frac{0.811^{4}}{\pi^{2}\left(1-0.811^{4}\right)}=0.07725$ and thus $k=\left[\frac{1+\pi^{2} \times 0.07725}{4\left(1+4 \pi^{2} \times 0.07725\right)}\right]^{0.25}=0.574$

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113		Sheet	0 of			A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 8: Verification of bare steel girder during construction							
	Client SCI		Made by	DCI	Date July 2009			
			Checked by	RJ	Date Sep 2009			

Thus, since the value of k given by the stiffness parameter and the central restraint curve is less than the value of k at the position of the arrow on that curve, it is to the right of the arrow and the cross girder will buckle in two half waves.
(Note: Detailed evaluation of the expressions in P356 for this case show that the arrow is at a stiffness parameter of about 570.)

For two half waves (node at central restraint):

$\lambda_{\mathrm{F}} \quad=2.56$ (half the previous value) and thus
$V=\left\{\left[4 \times 0.5(1-0.5)+0.05 \times 2.56^{2}+0\right]^{0,5}-0\right\}^{\}^{-0,5}}=0.932$
$\lambda_{\mathrm{z}}=\frac{L_{\mathrm{w}}}{i_{\mathrm{z}}}==\frac{5850}{63.7}=91.8$
$\bar{\lambda}_{\mathrm{LT}}=\frac{1}{\sqrt{C_{1}}} U V D \frac{\lambda_{\mathrm{z}}}{\lambda_{1}} \sqrt{\beta_{\mathrm{w}}}=1 \times 1 \times 0.932 \times 1.2 \times \frac{91.8}{77.5} \sqrt{0.890}=1.25$
$\phi_{\mathrm{LT}}=0.5\left[1+\alpha_{\mathrm{LT}}\left(\bar{\lambda}_{\mathrm{LT}}-0.2\right)+\bar{\lambda}_{\mathrm{LT}}^{2}\right]=0.5\left[1+0.76(1.25-0.2)+1.25^{2}\right]=1.68$
P356/C.3.2

Hence
$\chi_{\mathrm{LT}}=1 /\left(\phi_{\mathrm{LT}}+\sqrt{\phi_{\mathrm{LT}}^{2}-\bar{\lambda}_{\mathrm{LT}}^{2}}\right)=1 /\left(1.68+\sqrt{1.68^{2}-1.25^{2}}\right)=0.36$
$M_{\mathrm{b}, \mathrm{Rd}}=\frac{\chi W_{\mathrm{el}} f_{\mathrm{y}}}{\gamma_{\mathrm{M} 1}}=\frac{0.36 \times 8.273 \times 10^{6} \times 345}{1.1} \times 10^{-6}=934 \mathrm{kNm}>M_{\mathrm{Ed}}=571 \mathrm{kNm}$ OK

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			eet 3	of 5		Rev
	Job Title Composite highway bridges: Worked examples						
	Subject Example 2: Ladder deck three-span bridge Section 9: Verification of composite girder						
	$\begin{array}{\|l\|l\|} \hline \text { Client } \\ \text { SCI } \end{array}$		Made by D		Date July 2009		
		Checked by RJ			Date S	Sep 2009	
Buckling resistance							
For verification of buckling resistance in bending, the design resistance of the cross section (on which $M_{\mathrm{b}, \mathrm{Rd}}$ is based) has to be determined using:							
$M_{\text {el, Rd }}=M_{\text {a, Ed }}+k M_{\text {c,Ed }}$						4-2/(6.4)	
Where k is a factor such that a stress limit is reached.							
In this case the bottom flange will reach its limit first and the limit is:							
$f_{\mathrm{yd}}=f_{\mathrm{y}} / \gamma_{\mathrm{M} 1}=335 / 1.1=305 \mathrm{~N} / \mathrm{mm}^{2}\left(\gamma_{\mathrm{M} 1}\right.$ is used since buckling is being considered)							
Thus, considering bending stresses only:$M_{\mathrm{el}, \mathrm{Rd}}=12499+\frac{(305-108)}{180} \times 21471=35990 \mathrm{kNm}$							
To evaluate $M_{\mathrm{b}, \mathrm{Rd}}$, determine the slenderness							
The slenderness of the length of beam in the hogging region could be evaluated considering the LTB of a composite section comprising the effective width of slab and the steel girder but it is much simpler and a little less conservative to use the simplified method of EN 1993-2, as recommended by EN 1994-2.							6.4.3.2
Consider the lateral buckling of an effective Tee section comprising the bottom flange and one third of the depth of the part of the web in compression. Take the depth in compression as that under total effects, including axial force.						3-2/6.3.4.2	
Flange area is $800 \times 60 \mathrm{~mm}$ Height to zero stress: $(297 /(297+268) \times(2175-30)+30=1158 \mathrm{~mm}$ Height of web in compression $=1098 \mathrm{~mm}$							
			Stress	Mid			
		Top flange	268				
		Bottom flange	297				
Area of Tee $=800 \times 60+(1098 \times 20) / 3=55320 \mathrm{~mm}^{2}$							
Lateral $2^{\text {nd }}$ moment of area $=800^{3} \times 60 / 12=2560 \times 10^{6} \mathrm{~mm}^{4}$							
Radius of gyration $=\sqrt{2560 \times 10^{6} / 55320}=215 \mathrm{~mm}$							
Initially, assume that the first cross girder provides effective lateral restraint to the flange, through U-frame action.							
$N_{\mathrm{E}}=\pi^{2} \frac{E I}{L^{2}}=\pi^{2} \frac{210000 \times 2560 \times 10^{6}}{3500^{2}} \times 10^{-3}=433100 \mathrm{kN}$							(6.12)
The lateral restraint is sufficien $C_{\mathrm{d}}>\frac{4 N_{\mathrm{E}}}{L}$	ly stiff if its stiffness C	${ }_{\text {d }}$ satisfies:				$\begin{aligned} & 3-2 / 6.3 .4 .2 \\ & (6.13) \end{aligned}$	

Silwood Park, Ascot, Berks SL5 $70 N$ Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113		Sheet	3 of		Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 9: Verification of composite girder							
	ClientSCI		Made by	DCI	Date	July 2009		
			Checked by	RJ	Date	Sep 2009		

The stiffness of the U-frame is given by consideration of equal and opposite unit forces applied at the two bottom flanges. Following the guidance in Table D.3, this may be expressed as:
$\frac{1}{C}=\frac{h_{v}^{3}}{3 E I_{v}}+\frac{h^{2} b_{\mathrm{q}}}{2 E I_{\mathrm{q}}}$

At the first cross girder:
$b_{\mathrm{q}} \quad=11700, h_{\mathrm{v}}=1114 \mathrm{~mm} h=1979 \mathrm{~mm}$, (to mean level of short-term NA)
$I_{\mathrm{q}} \quad=1.02 \times 10^{10}$ (short-term section, average value over tapered cross girder)
$I_{\mathrm{v}}=1.89 \times 10^{8}$ (web plus flat stiffener)
Hence $C_{\mathrm{d}}=210000 /\left(\frac{1114^{3}}{3 \times 1.89 \times 10^{8}}+\frac{1979^{2} \times 11700}{2 \times 1.02 \times 10^{10}}\right)=44800 \mathrm{~N} / \mathrm{mm}$
The required C_{d} is:
$\frac{4 \times 433100}{3500} \times 10^{3}=495000 \mathrm{~N} / \mathrm{mm}$
Therefore the frame is not stiff enough to be considered as rigid
Now consider the stiffness of the second frame, for buckling over a length of 2 panels. Since the half wavelength has doubled,
$N_{\mathrm{E}}=433100 / 4=108300 \mathrm{kN}$ and required C_{d} is then $4 \times 108300 / 7.0=61900 \mathrm{kN} / \mathrm{m}$
For this frame, $h=1729 \mathrm{~mm}, h_{\mathrm{v}}=864 \mathrm{~mm}$

$$
C_{d}=210000 /\left(\frac{864^{3}}{3 \times 1.89 \times 10^{8}}+\frac{1729^{2} \times 11700}{2 \times 1.02 \times 10^{10}}\right)=73600 \mathrm{~N} / \mathrm{mm}(\equiv \mathrm{kN} / \mathrm{m})
$$

Which is sufficient to be considered as rigid
The verification may be carried out using

$$
\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{A_{\text {eff }} f_{\mathrm{y}}}{N_{\text {crit }}}}
$$

Where $N_{\text {crit }}=m N_{\mathrm{E}}$
N_{E} is the elastic critical buckling load for the equivalent column under uniform axial force and m is a parameter that allows for intermediate lateral spring restraints and for non-uniform axial force. Expressions are given in 6.3.4.2(7) depending on the ratio M_{2} / M_{1} and V_{2} / V_{1}, as well as on the intermediate spring stiffness.
In this case, the girder tapers over the buckling length and it would be complex to determine the value of m but the limiting (minimum) value of 1.0 may be used and is not overly conservative for this situation.

3-2/D.2.4

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet	34 of					
	Job Title Composite highway bridges: Worked examples									
	Subject Example 2: Ladder deck three-span bridge Section 9: Verification of composite girder									
	Client SCI		Made by	DCI	Date	July 2009				
			Checked by	RJ	Date	Sep 2009				
Thus										
$\bar{\lambda}_{\mathrm{LT}}=\sqrt{\frac{A_{\text {eff }} f_{\mathrm{y}}}{N_{\text {crit }}}}=\sqrt{\frac{55320 \times 335}{108300 \times 10^{3}}}=0.414$										
$\phi_{\mathrm{LT}}=0.5\left[1+\alpha_{\mathrm{LT}}\left(\bar{\lambda}_{\mathrm{LT}}-0.2\right)+\bar{\lambda}_{\mathrm{LT}}^{2}\right]=0.5\left[1+0.49(0.414-0.2)+0.414^{2}\right]=0.638$						3-1-1/NA.2.16				
Hence										
$\chi_{\mathrm{LT}}=1 /\left(\phi_{\mathrm{LT}}+\sqrt{\phi_{\mathrm{LT}}^{2}-\bar{\lambda}_{\mathrm{LT}}^{2}}\right)=1 /\left(0.638+\sqrt{0.638^{2}-0.414^{2}}\right)=0.890$										
For verifying the contribution of axial resistance in the interaction criterion, consider the same Tee section (and thus the same slenderness and reduction factor).										
No effective section for axial force is given in EN 1993-2 but it could be argued that the effective Tee that would buckle laterally should comprise half the area of the web: the slenderness with this amount of web is very little different from that of the effective Tee for bending. The same area is used here for both cases.										
$\begin{aligned} & N_{\mathrm{b}, \mathrm{Rd}} \quad=\chi A_{\text {Tee }} f_{\mathrm{yd}}=0.890 \times 55440 \times 305=15050 \mathrm{kNm} \\ & N_{\mathrm{Ed}}=A_{\text {Tee }} \times \text { stress }=55320 \times 9=498 \mathrm{kN} \end{aligned}$										
This verification of resistance to buckling may be carried out at a distance from the largest moment given by $0.25 L_{\mathrm{k}}$ (where $L_{\mathrm{K}}=L / \sqrt{m}$)						$\begin{aligned} & 3-2 / \\ & \text { 6.3.4.2(7) } \end{aligned}$				
Here, consider moment at 0.25×7000 from the support. Conservatively this can be interpreted linearly between the values at the two ends (7000 mm apart) or in this case linearly between values at the support and first cross girder.										
At the support, $\quad M_{\mathrm{Ed}}=33970 \mathrm{kNm}$ At the first cross girder $\quad M_{\mathrm{Ed}}=20810 \mathrm{kNm}$ Hence $M_{\mathrm{Ed}}=27390 \mathrm{kNm} \text { at } 0.25 L_{\mathrm{k}}$										
The section is subject to combined bending and axial force and a linear interaction will be assumed since the buckling mode is the same for both.										
In the M / N interaction verification, use $N_{\mathrm{Ed}}=498 \mathrm{kN}$ (on the effective column) without reduction over the buckling length.										
The interaction relationship is thus:										
$\frac{M_{\mathrm{Ed}}}{M_{\mathrm{b}, \mathrm{Rd}}}+\frac{N_{\mathrm{Ed}}}{N_{\mathrm{b}, \mathrm{Rd}}}=\frac{27390}{32030}+\frac{498}{15050}=0.855+0.033=0.888 \mathrm{OK}$ The buckling resistance is satisfactory. Interaction with shear must also be considered (using cross section resistances).										

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113		Sheet	35 of	58	Rev	A
	Job Title Composite highway bridges: Worked examples							
	$\begin{array}{ll}\text { Subject } & \text { Example 2: Ladder deck three-span bridge } \\ & \text { Section 9: Verification of composite girder }\end{array}$							
	$\begin{aligned} & \hline \text { Client } \\ & \text { SCI } \end{aligned}$		Made by	DCI	Date	July 2009		
			Checked by	RJ	Date	Sep 2009		

9.2 Maximum shear at support

The maximum shear in the girder at the intermediate support $=4533 \mathrm{kN}$
However, the bottom flange is inclined and contributes a vertical component of force The total stress in the bottom flange is $262 \mathrm{~N} / \mathrm{mm}^{2}$ and the inclination is 0.0952 rad
Hence vertical component $=(262 \times 800 \times 60 / 1000) \times 0.0952=1197 \mathrm{kN}$
$V_{\mathrm{Ed}}=4533-1197=3336 \mathrm{kN}$
Assume that no transverse web stiffeners are provided, other than those to attach cross girders (3500 mm spacing).
The web panel adjacent to the support is tapered; base the slenderness on the deeper end of the panel.

$$
\begin{aligned}
a_{\mathrm{w}} & =3500 \mathrm{~mm} \\
h_{\mathrm{w}} & =2090 \mathrm{~mm} \\
t & =20 \mathrm{~mm} \\
f_{\mathrm{y}} & =345 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The factor $\eta=1.0$ according to the NA
From equation (5.6):
$\bar{\lambda}_{\mathrm{w}}=\frac{h_{w}}{37.4 t \varepsilon \sqrt{k_{\mathrm{t}}}}$ where $\varepsilon=\sqrt{235 / f_{\mathrm{y}}}=\sqrt{235 / 345}=0.83$
Since $a_{\mathrm{w}}>h_{\mathrm{w}}$ and there are no longitudinal stiffeners:
$k_{\mathrm{t}}=5.34+4.0\left(h_{\mathrm{w}} / a\right)^{2}=5.34+4.0(2090 / 3500)^{2}=6.77$
$\bar{\lambda}_{\mathrm{w}}=\frac{2090}{37.4 \times 20 \times 0.83 \sqrt{6.77}}=1.294$
Since the girder is continuous, consider as a rigid endpost case. Thus, from Table 5.1:
$\chi_{w}=1.37 /\left(0.7+\bar{\lambda}_{\mathrm{w}}\right)=1.37 / 1.994=0.687$
$V_{\mathrm{bw}, \mathrm{Rd}}=\frac{\chi_{\mathrm{w}} f_{\mathrm{yw}} h_{\mathrm{w}} t}{\sqrt{3} \gamma_{\mathrm{M} 1}}=\frac{0.687 \times 345 \times 2090 \times 20}{\sqrt{3} \times 1.1} \times 10^{-3}=5200 \mathrm{kN}$
This resistance is adequate, even without a contribution from the flanges.
Using the same web slenderness, the shear resistance at the shallow end of the panel is 4813 kN . The force in the compression flange is less at that position and although the flange force is also less, $V_{\mathrm{Ed}, \mathrm{net}}=2865 \mathrm{kN}$ (calculations not shown here). This is OK.

9.3 Combined bending and shear

The shear coexisting with maximum moment is 3827 kN less a contribution from the inclined flange of 1325 kN , giving a net value of $V_{\mathrm{Ed}}=2502 \mathrm{kN}$

Sheet 22

3-1-5/NA.2.4

3-1-5/5.3

3-1-5/A. 3
$3-1-5 / 5.2$

So interaction does not need to be considered for this design situation. ($\bar{\eta}_{3}<0.5$)
For the maximum shear design situation $\left(M_{\mathrm{Ed}}=30576 \mathrm{kNm}, V_{\mathrm{Ed}}=4533 \mathrm{kN}\right.$, $N_{\mathrm{Ed}}=1092 \mathrm{kN}$) the net shear is $V_{\mathrm{Ed}, \text { net }}=3336 \mathrm{kN}$ and thus:

$$
\bar{\eta}_{3}=\frac{V_{\mathrm{Ed}}}{V_{\mathrm{bw}, \mathrm{Rd}}}=\frac{3336}{5200}=0.642
$$

So shear-moment interaction does need to be considered. ($\bar{\eta}_{3}>0.5$)
For interaction, consider the value of $M_{\mathrm{f}, \mathrm{Rd}}$. For this parameter, $\gamma_{\mathrm{M} 0}$ applies and the value must take account of axial force.
The area of the bottom flange is smaller than that of the top plus the rebars and its compressive resistance is 16080 kN . Deduct half the compressive force (conservative, since that flange is smaller) and multiply by the lever arm between the two flanges (take $d=2220 \mathrm{~mm}$). Thus $M_{\mathrm{f}, \mathrm{Rd}}=(16080-1092 / 2) \times 2.22=34500 \mathrm{kNm}$
Since $M_{\mathrm{Ed}}<M_{\mathrm{f}, \mathrm{Rd}}$ the interaction criterion of 3-1-5/7.1 does not apply and the combined effects are satisfactory.
As noted in Example 1, it is suggested in PD 6696-2 that M_{Ed} should be determined from accumulated stress, rather than as the sum of the moments. That calculation is not shown here but the value would be less than $M_{\mathrm{f}, \mathrm{R} \mathrm{d}}$.

9.4 In sagging bending

The composite cross section is Class 1 (pna in the top flange) so the plastic resistance can be utilised.

The plastic bending resistance of the short term composite section is 22519 kNm and the total design value of bending effects is 16654 kNm , with an axial tensile force of 2263 kN . The presence of tensile axial force on the plastic bending resistance is not covered by EN 1994-2; in this case, where the pna of the composite section is at the mid thickness of the top flange, the axial force only moves the pna within the top flange and there is negligible effect on the plastic bending resistance. The cross section is satisfactory by inspection.
It can also be seen that the stresses calculated elastically, taking account of construction in stages, are satisfactory, as follows:

Sheet 10
Sheet 22

	Job No.	BCR113	Sheet 39	of	58

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No.	BCR113		Sheet	0 of		Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 9: Verification of composite girder							
	Client SCI		Made by	DCI	Date	July 2009		
			Checked by	RJ	Date	Sep 2009		

The strength of the cross girders also needs to be checked for this effect. The destabilising effect of the slab applies an additional moment of:
$\left(w_{0}^{\prime}+\delta\right) \frac{\sigma_{\mathrm{m}} b^{2}}{\pi^{2}}=(31+1.08) \times \frac{0.44 \times 11700^{2}}{\pi^{2}} \times 10^{-6}=196 \mathrm{kNm}$
Based on
D6.6-20

This results in an additional tensile stress in the bottom flange of:
$196 \times 10^{6} / 12.89 \times 10^{6}=15 \mathrm{~N} / \mathrm{mm}^{2}$
This gives a total stress of $262+15=277 \mathrm{~N} / \mathrm{mm}^{2}-\mathrm{OK}$.
Note that, although the cross girders are stiff enough to act as restraints to the slab against buckling, verification of the slab still needs to consider second order effects, since the slenderness $a / t(=3500 / 250=14)$ may exceed the limit below which such effects can be ignored (see 2-1-1/5.8.3). Detailed design of the deck slab is not covered in this example.

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113			Sheet 41 of 58			Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 10: Longitudinal shear							
	Client SCI		Made by	DCI	Date	July	009	
			Checked by		Date		009	

10 Longitudinal shear

The resistance to longitudinal shear is verified for the web/flange weld, the shear connectors and the transverse reinforcement at the pier and at mid-span. (In practice, intermediate values would also be verified, to optimise the provision of shear connectors.)

Since the composite beam model for which moments and forces have been extracted from the 3D FE model does not include the full width of slab, the shear flow will depend on both the cross section properties in bending (applied to the shear force on the section) and on the variation of axial force along the beam, due to the shear transferred from the portions of slab not included in the beam section.

10.1 Effects for maximum shear

ULS values at pier

	Shear	Axial force	
	force	Pier	CG8
Shear on steel section (stages 1-3)	1443	51	38
Shear on long-term composite section (cracked)	936	303	227
Shear on short-term composite section (cracked)	2169	563	351

ULS values at midspan (CG13)

	Shear	Axial force	
	force	CG13	CG12
Shear on steel section (stages 1-3)	-7	40	40
Shear on long-term composite section	0	-457	-407
Shear on short-term composite section	755	$\Delta F_{x}=530$	

SLS values

(Only values for composite section noted)

	Pier	Span (CG13)
Shear on long-term composite section	769	0
Shear on short-term composite section (worst effects)	1612	559

10.2 Section properties

To determine shear flows elastically, the parameter $\overline{A z} / I_{\mathrm{y}}$ is needed for each section and stage.

For composite sections, uncracked unreinforced composite section properties can be

Values from
Sections 7.1 and 7.2 used to determine shear flow.

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR11			Sheet 4	3 of		Rev		
	Job Title Composite highway bridges: Worked examples								
	$\begin{array}{ll}\text { Subject } & \text { Example 2: Ladder deck three-span bridge } \\ & \text { Section 10: Longitudinal shear }\end{array}$								
	Client SCI		Made by	DCI	Date	July 2009			
			Checked by	RJ	Date	Sep 2009			
The shear at the slab/girder interface depends on the ratio of steel area to composite areas:$\begin{aligned} \text { Shear flow } & =85320 / 164300 \times 14=7 \mathrm{kN} / \mathrm{m} \text { (long) } \\ & =85320 / 305100 \times 151=42 \mathrm{kN} / \mathrm{m} \text { (short) } \end{aligned}$									
The shear at the web/flange junction depends on the area of web plus bottom flange:$\begin{aligned} \text { Shear flow } & =53320 / 164300 \times 14=5 \mathrm{kN} / \mathrm{m} \text { (long) } \\ & =53320 / 305100 \times 151=26 \mathrm{kN} / \mathrm{m} \text { (short) } \end{aligned}$									
The total shear flows are thus:									
At the pier: slab/flange shear $=1173 \mathrm{kN} / \mathrm{m}, \quad$ web/flange shear $=1918 \mathrm{kN} / \mathrm{m}$ At midspan: slab/flange shear $=618 \mathrm{kN} / \mathrm{m}, \quad$ web/flange shear $=622 \mathrm{kN} / \mathrm{m}$ 10.4 Shear flow at SLS									
Force at flange/slab junction									
 At pier $769 \times 0.276+1612 \times 0.385837 \mathrm{kN} / \mathrm{m}$ At mid-span 0									
The shear flow at SLS is required for verification of the shear connectors									
These values are 76% and 74% respectively of the ULS values and the ratio reflects the different partial factors at ULS and SLS. It can be assumed that similar ratios apply to the shear flow due to variation of axial force. 10.5 Web/flange welds									
$F_{\mathrm{w}, \mathrm{Rd}}=f_{\mathrm{vw}, \mathrm{~d}} a \text { where } f_{\mathrm{vw}, \mathrm{~d}}=\frac{f_{u} / \sqrt{3}}{\beta \gamma_{M 2}}$									
For web and flange grade 355 in thickness range $3-100 \mathrm{~mm}, \quad f_{\mathrm{u}}=470 \mathrm{~N} / \mathrm{mm}^{2} \quad$ EN 10025-2							For 6 mm throat fillet weld (8.4 mm leg length) $a=6 \mathrm{~mm}$		
From Table 3-1-8/4.1 $\beta=0.9$									
Thus $F_{w, R d}=\frac{6 \times 470 / \sqrt{3}}{0.9 \times 1.25}=1447 \mathrm{~N} / \mathrm{mm}(\mathrm{kN} / \mathrm{m})$									
Resistance of 2 welds $=2890 \mathrm{kN} / \mathrm{m}>1918 \mathrm{kN} / \mathrm{m}$ shear flow in pier girder -OK 10.6 Shear connectors Stud shear connectors 19 mm diameter 150 mm long (type SD1 to EN ISO 13918) are assumed, with $f_{\mathrm{u}}=450 \mathrm{~N} / \mathrm{mm}^{2}$									

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113		Sheet 45 of 58		Rev A
	Job Title Composite highway bridges: Worked examples				
	Subject Example 2: Ladder deck three-span bridge Section 10: Longitudinal shear				
	$\begin{aligned} & \text { Client } \\ & \text { SCI } \end{aligned}$	Made by	DCI Date	July 2009	
		Checked by	RJ Date	Sep 2009	
The shear force to be resisted is given by $4-2 /(6.21)$ as $1362 / \cot \theta$ Take $\cot \theta=1$, hence required resistance $=1362 \mathrm{kN} / \mathrm{m}$ Assume B20 bars at 150 mm spacing: Resistance $=A_{\mathrm{sf}} f \mathrm{y}_{\mathrm{d}} / s_{\mathrm{f}}=(2 \times 314) \times(500 / 1.15) / 150 \times 10^{-3}=1821 \mathrm{kN} / \mathrm{m}$ The transverse bars are adequate. The underside of the heads of the studs need to be at least 40 mm above the transverse bars. In this case an overall stud height of 150 mm should be sufficient.				$\begin{aligned} & 2-1-1 / 6.2 .4 \\ & 2-1-1 / 6.2 .4 \\ & 4-2 / 6.6 .5 .4 \end{aligned}$	

	Job No.	BCR113	Sheet 49	of	58

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR113		Sheet	53 of		Rev A	
	Job Title Composite highway bridges: Worked examples						
	Subject Example 2: Ladder deck three-span bridge Section 12: Cross girder to main girder connection						
	Client SCI	Made by	DCI	Date	July 2009		
		Checked by	RJ	Date	Sep 2009		
12.4 Design resistance of individual bolt connection							
The connection is made with M24 grade 8.8 preloaded bolts in 26 mm hole							
Cross girder web thickness $=15 \mathrm{~mm}\left(\sigma_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}\right)$ Main girder stiffener thickness $=30 \mathrm{~mm}\left(\sigma_{\mathrm{y}}=345 \mathrm{~N} / \mathrm{mm}^{2}\right)$							
Slip resistance					3-1-8/3.9.1		
$F_{\mathrm{s}, \mathrm{Rd}}=\frac{k_{\mathrm{s}} n \mu}{\gamma_{\mathrm{M} 3}} F_{\mathrm{p}, \mathrm{C}}$							
$\begin{aligned} F_{\mathrm{p}, \mathrm{C}} & =0.7 f_{\mathrm{u}} A_{\mathrm{s}}=0.7 \times 800 \times 353=198 \mathrm{kN} \\ \mu & =0.5 \text { (class A friction surface) } \end{aligned}$					(3.7)		
$\begin{aligned} \mu & =0.5 \text { (class A friction surface) } \\ k_{\mathrm{s}} & =1.0 \text { (normal clearance holes) }\end{aligned}$							
$F_{\mathrm{s}, \mathrm{Rd}}=\frac{1.0 \times 198 \times 1 \times 0.5}{1.25}=79.2 \mathrm{kN}$							
As the connection will be designed against slip at ULS, the forces in the bolts must be determined by an 'elastic' distribution of stresses in the web of the cross girder							
For information, the following calculation of bearing/shear resistance at ULS is included. It shows that the resistance in bearing/shear is greater than against slip. This higher value could be used where restraint of the main girders against LTB is not needed but, as explained earlier, the same connection detail would normally be used on all cross girders.							
ULS shear resistance of a single bolt							
$\text { Resistance }=F_{\mathrm{v}, \mathrm{Rd}}=\frac{\alpha_{\mathrm{v}} f_{\mathrm{ub}} A}{\gamma_{\mathrm{M} 2}}$					3-1-8/ Table 3.4		
$\begin{array}{ll}A & =A_{\mathrm{s}}=353 \mathrm{~mm}^{2} \\ f_{\mathrm{ub}} & =800 \mathrm{~N} / \mathrm{mm}^{2}\end{array}$					bolt strength:$3-1-8 / 3.1 .1$		
$\alpha_{v} \quad=0.6$ for grade 8.8 bolts							
$\text { Resistance }=\frac{0.6 \times 353 \times 800}{1.25} \times 10^{-3}=136 \mathrm{kN}$							
ULS bearing resistance of a single bolt on the cross girder web							
$\text { Resistance }=F_{\mathrm{b}, \mathrm{Rd}}=\frac{k_{1} \alpha_{\mathrm{b}} f_{\mathrm{u}} d t}{\gamma_{\mathrm{M} 2}} \mathrm{kN}$					3-1-8/ Table 3.4		
$\left.k_{1}=\min \left(2.8 \frac{e_{2}}{d_{0}}-1.7 ; 2.5\right)\right)$ for edge bolts							
$\left.k_{1}=\min \left(2.8 \frac{45}{26}-1.7 ; \quad 2.5\right)\right)=2.5$							

Again, the force under combined shear and bending is not perpendicular to the lines of bolts, so use the lesser spacing
$\left.k_{1}=\min \left(1.4 \frac{70}{26}-1.7 ; \quad 2.5\right)\right)=2.07$
α_{b} is the smallest of $\alpha_{\mathrm{d}}, f_{\mathrm{ub}} / f_{\mathrm{u}}$ and 1.0
$\alpha_{\mathrm{d}}=\frac{e_{1}}{3 d_{0}}$ for end bolts and $\alpha_{\mathrm{d}}=\frac{p_{1}}{3 d_{0}}-\frac{1}{4}$ for inner bolts
$\alpha_{d}=\frac{45}{3 \times 26}=0.58$ for end bolts and $\alpha_{d}=\frac{70}{3 \times 26}-\frac{1}{4}=0.65$ for inner bolts
The bearing resistances in different locations in the splice will be different. Consider the bottom corner bolt as a end-edge bolt) although the component due to shear is away from the end, not toward it)
$F_{\mathrm{b}, \mathrm{Rd}}=\frac{2.5 \times 0.58 \times 355 \times 24 \times 15}{1.25}=148 \mathrm{kN}$

So the ULS bearing/shear resistance is determined by the shear capacity of the bolt
3-1-8/3.7 and this value must be used for all the bolts in the group.

12.5 Design forces on bolt group
 Midspan cross girder (CG13)

Moment at centroid of bolt group
$M=-(85+184)+(304+859) \times(100+70) \times 10^{-3}=-71 \mathrm{kNm}$ (hogging)
Shear $=(304+859)=1163 \mathrm{kN}$

Cross girder adjacent to pier (CG8)

Moment at centroid of bolt group
$M=-(212+447)+(295+933) \times(100+70) \times 10^{-3}=-450 \mathrm{kNm}$ (hogging)
Shear $=(295+933)=1228 \mathrm{kN}$

Second cross girder from pier (CG9)

This cross girder provides the effective lateral restraint to the bottom flange that is assumed in determining the buckling resistance in Section 9.1. For this cross girder, in addition to moments from analysis, include an allowance of 1% of the maximum force in the bottom flange over the braced length (here $L_{\mathrm{k}}=\ell$).

3-2/6.3.4.2(5)
Flange force $=297 \times 48000 \times 10^{-3}=14300 \mathrm{kN}$
Lateral force $=143 \mathrm{kN}$
Moment depends on height from flange to CG of the effective Tee section (see below)

Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No. BCR1		Sheet	57		Rev	
	Job Title Composite highway bridges: Worked examples						
	Subject Example 2: Ladder deck three-span bridge Section 12: Cross girder to main girder connection						
	$\begin{array}{\|l\|l\|} \hline \text { Client } \\ \text { SCC } \end{array}$	Made by	DCI	Date July 2009			
		Checked by		Date Sep 2009			
Determine force (in web portion) at the level of the bottom row of bolts Stress midway between lowest two rows for $M=450 \mathrm{kNm}$ (Sheet 54): $\frac{450 \times 10^{6}}{4.03 \times 10^{6}}=112 \mathrm{~N} / \mathrm{mm}^{2}$ Stress at bottom of web: $\frac{450 \times 10^{6}}{3.56 \times 10^{6}}=126 \mathrm{~N} / \mathrm{mm}^{2}$ Force = average stress \times depth $=(112+126) / 2 \times 15 \times(808-723) \times 10^{-3}=151.8 \mathrm{kN}$ Force $/$ bolt $=151.8 / 3=50.6 \mathrm{kN}$ The total resultant force is thus: $F \quad=\sqrt{51.2^{2}+50.6^{2}}=72.0 \mathrm{kN}<79.2 \mathrm{kN} \mathrm{OK}$ The stress in the concrete due to the moment is: Top of slab: $\frac{450 \times 10^{6}}{63.6 \times 10^{6}}=7.08 \mathrm{~N} / \mathrm{mm}^{2}$ (tension) This stress is about double the tensile strength (which is the limit for using uncracked properties for determining flexural effects, according to 4-2/5.4.2.3). Although the surface stress given by the connection model is not considered reliable for verification of the slab, it is indicative that the local stress is not excessive. The tensile force for the stress distribution given by the model could be resisted by the transverse reinforcement (20 mm bars at 150 mm centres).							

Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 636525 Fax: (01344) 636570 CALCULATION SHEET	Job No	BCR113		Sheet	58 of	58	Rev	A
	Job Title Composite highway bridges: Worked examples							
	Subject Example 2: Ladder deck three-span bridge Section 12: Cross girder to main girder connection							
	Client SCI		Made by	DCI	Date	July 2009		
			Checked by		Date	Sep 2009		

Determine force (in web portion) at the level of the bottom row of bolts
Stress midway between lowest two rows:
$\frac{416 \times 10^{6}}{4.03 \times 10^{6}}=103 \mathrm{~N} / \mathrm{mm}^{2}$
Stress at bottom of web:
$\frac{416 \times 10^{6}}{3.56 \times 10^{6}}=117 \mathrm{~N} / \mathrm{mm}^{2}$
Force $\quad=$ average stress \times depth $=(103+117) / 2 \times 15 \times(808-723) \times 10^{-3}=140 \mathrm{kN}$
Force/bolt $=140 / 3=46.7 \mathrm{kN}$
The total resultant force is thus:
$F \quad=\sqrt{49.5^{2}+46.7^{2}}=68.1 \mathrm{kN}<79.2 \mathrm{kN} \mathrm{OK}$
The stress in the concrete due to the moment is:
Top of slab: $\frac{416 \times 10^{6}}{63.6 \times 10^{6}}=6.54 \mathrm{~N} / \mathrm{mm}^{2}$ (tension)
As noted for CG8, this is not a reliable value for verification of the slab.
As for CG8, the shear connectors need to be verified for the combined longitudinal effects but that verification is not given here.

REFERENCES

1. TD 27/05, Cross-Sections and Headrooms, (Part of the Design Manual for Roads and Bridges)
TSO, 2005.
2. TA $90 / 05$, The Geometric Design of Pedestrian, Cycle and Equestrian Routes, (Part of the Design Manual for Roads and Bridges) TSO, 2005.
3. PD 6694-1, Recommendations for the design of structures subject to traffic loading to BS EN 1997-1
(due to be published by BSI in 2010)
4. ILES, D.C.

Design of composite highway bridges (P356)
The Steel Construction Institute, 2010
5. HENDY, C.R. and JOHNSON, R.P.

Designers' guide to EN 1994-2
Thomas Telford, 2006
6. Steel Bridge Group: Guidance notes on best practice in steel bridge construction ($5^{\text {th }}$ edition, P185)

GN 2.06 Connections made with preloaded bolts
GN 5.08 Hole sizes and positions for preloaded bolts
The Steel Construction Institute, 2010
7. HENDY, C.R. and MURPHY, C.J.

Designers' guide to EN 1993-2
Thomas Telford, 2007

[^0]: Published by:
 The Steel Construction Institute
 Silwood Park
 Ascot
 Berkshire SL5 7QN
 Tel: 01344636525
 Fax: 01344636570

[^1]: ${ }^{\dagger}$ This publication includes references to Corus, which is a former name of Tata Steel in Europe

