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This publication provides guidance on the determination of buckling resistance of
beams and columns in accordance with Eurocode 3. The theory of elastic stability

of beams and columns is reviewed briefly and the requirements of the Eurocode

are explained. The typical forms of end restraint and intermediate restraint, which
influence the buckling resistance, are illustrated and their influence discussed. The
recommendations made are consistent with BS EN 1993-1-1, the UK National Annex
and relevant non-contradictory complementary information (NCCI). Four simple worked
examples are included.
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The stability of beams and columns and the determination of their buckling resistances
is an integral part of the design of steel framed buildings, both single storey and multi-
storey. However, many designers experience difficulty in evaluating the effects of the
many different types of end and intermediate restraints to beams and columns and
thus in determining the buckling resistance. The difficulty often arises because practical
restraint situations do not conform exactly to the standardized situations given in
application rules. This publication provides guidance, with particular reference to design
to the Eurocodes, that will assist designers to make safe yet not overly conservative

evaluations of buckling resistance without the need to resort to complex analysis.

1.1 Design to the Eurocodes

The current standard for the design of steel framed buildings in the UK is Eurocode 3;
the design of beams and columns is covered principally by BS EN 1993-1-1™ and its
accompanying National Annex. The standard gives principles and application rules
for the design of steel members, including rules for determining buckling resistance.
General guidance on design in accordance with the Eurocodes is given in a number
of publications, including Introduction to the Eurocodes™® and Medium rise braced
frames®. The guidance in the present publication complements the rules in the
Eurocodes and in other SCI publications.

For brevity in this publication, references to clauses in BS EN 1993-1-1 simply
quote the clause, figure or expression number - for example 6.3.1 would refer to
Clause 6.3.1 and (6.46) would refer to Expression (6.46). Where other Eurocode Parts

are referenced, a full reference is given.

1.2 Scope of this publication

This publication is concerned principally with the lateral buckling of columns and the lateral
torsional buckling of beams. The theoretical aspects of buckling in its various forms are not

covered in great detail, since there are existing comprehensive texts on this subject.

Section 2 addresses the rules in BS EN 1993-1-1 for the buckling resistance of
members in buildings. It does not address the resistance of cross sections, including
the effect of local buckling of elements of the cross section. Guidance is given on the

use of the rules for the different types of restraint to beams and columns. As well as
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references to BS EN 1993-1-1, Section 2 refers to several sources of non-contradictory
complementary information (NCCI) that facilitate use of the Eurocode rules; most of

these documents may be found at the website www.steel-ncci.co.uk.

Section 3 describes in more detail the practical forms of restraints to beams and
indicates how values for various parameters used in Section 2 may be chosen to suit
particular situations. Section 4 discusses the treatment of stabilizing and destabilizing
loads on beams and Section 5 covers the additional demands on bracing systems
when frames are designed plastically. Section 6 covers the practical forms of restraint
to columns and shows how these forms affect the calculation of buckling resistance.

Four simple worked examples are included.









The starting point for the stability design of structural components is elastic buckling
theory. The most fundamental case is that of an axially compressed column whose
buckling load is given by the well known Euler expression (Equation 2.1), though the
general form of the Euler expression also features in many other stability problems.
Consideration of theoretical buckling solutions is particularly relevant when designing
to Eurocode 3 since elastic buckling loads and moments (referred to in Eurocode 3
as elastic critical forces and moments) feature far more prominently in the design
calculations than in previous British Standards.

2.1 Column buckling

2.1.1 Elastic critical force

The elastic critical force for flexural buckling of a perfect, pin-ended column (i.e. the
Euler load) is given by Equation (2.1):

' El
N, = Iz (for pin-ended columns) (2.1)
where
1 is the second moment of area of the section
E is the modulus of elasticity (taken as 210000 N/mm? for steel)
L is the length of the column.

For end conditions other than pinned, the elastic critical force may be obtained from
Equation (2.2), where the actual column length L has been replaced by its buckling
length L (= kL), often referred to as its effective length. For a pin-ended column, the
buckling length L = L, while other end conditions are discussed throughout this guide.

B n*El
N, = I (for columns with any end conditions) (2.2)

cr

Below the theoretical buckling load N_, there are no lateral deflections, but upon reaching
N_, lateral deflections grow rapidly. Writing N_ in terms of stress o by dividing through by

cr

the cross-sectional area 4, and defining the radius of gyration i from I = A4i?, gives

N, mE(4i’) n’E 1'E

O =—=

T4 A (L)} P
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in which 4 is the geometric slenderness ratio (L_/i) of the column. In Clause 6.3.1 of

BS EN 1993-1-1, the parameter 'non-dimensional slenderness' 1 , is introduced:

7o |
Ncr

The parameter 1 is a measure of slenderness that depends on both the material

(2.4)

properties (£ andfy) and the geometric properties of the member. The non-dimensional
slenderness 4 is simply the geometric slenderness L_/i normalized by a limiting
slenderness 4, at which the elastic buckling stress o, of the column is equal to its yield
strengthfy, as given by Equation (2.5):

- L,/i
Totall (2.5)
A4
The limiting slenderness 4, (where o = /) may be found to be:
E
=T — (2.6)
1y

Minor manipulation reveals that Equations (2.5) and (2.6) are indeed equivalent to
Equation (2.4), as demonstrated in Equation (2.7).

[E [T
I:Lcr/i_ O-cr _ Gcr _ i_ i

= = = = (2.7)
/11 E 1 Gcr Ncr
T [ _
Lo\
Values of 4, for different steel grades (i.e. varying yield strengths) are given in
Table 2.1, and may be used to determine 1 directly from the slenderness ratio A
through Equation (2.5).
THICKNESS RANGE YIELD STRENGTHfv
STEEL GRADE (mm) (N/mm?) ) 4
S275 t<16 275 86.8
S275 16 <t<40 265 88.4
Table 2.1 o355 t<16 355 76.4
Values of 1, for
S355 16 <t<40 345 77.5

different steel grades

The approach of defining a component’s slenderness by means of its yield and elastic
buckling characteristics is common throughout Eurocode 3.

Columns usually have different second moments of area about different buckling axes
(e.g. I sections). Major and minor axis flexural buckling of an I section member typically
relate to flexural deformations in the directions parallel and perpendicular to the web
respectively. Note that the axes convention in Eurocode 3 is such that the y-y axis is the
major axis and the z-z axis is the minor axis, as shown in Figure 2.1. According to Euler
theory, lateral buckling will occur about the z-z axis (i.e. about the weaker axis) if i < i

unless lateral displacement is restrained in this direction.



In addition to the familiar flexural buckling mode described above, struts may also

buckle by either pure twisting about their longitudinal axis or a combination of bending
and twisting. The first type of behaviour is referred to as torsional buckling and is only
possible for centrally-loaded doubly-symmetrical cross sections for which the centroid
and shear centre coincide. The second, rather more general, form of response is termed
torsional-flexural buckling and can occur in struts such as channels for which the
centroid and shear centre do not coincide. The elastic critical forces for torsional buckling
N, and for torsional-flexural N, buckling are given in BS EN 1993-1-3%, since these
forms of buckling are most prevalent in cold-formed sections. A member will buckle in
the mode (flexural, torsional or torsional-flexural) that has the lowest elastic critical force;

for hot-rolled steel sections, this is generally the flexural buckling mode.

2.1.2 Flexural buckling resistance

The above discussion relates to the elastic buckling of perfect columns. Real columns

or other compression members (often termed struts) behave in a different manner.

The presence of an initial lack of straightness and/or small eccentricities of loading will
mean that the column or strut will develop lateral deformations gradually rather than as
a sudden process. Thus yielding will develop from the more heavily compressed regions,
leading to a progressive loss of stiffness. This in turn will be influenced by the presence
of residual stresses. Since the actual magnitude and distribution of factors like initial
bow, residual stress, etc. will vary both between section types and, to some extent, within
different samples of the same section, the actual relationship between column strength

and slenderness will spread over a relatively wide band.

b [ J
i
|
o ‘ -,
\
i
i
|
i y == % fffffffff —y
\
\
|
\
| :
! I
) k1
v \ J
\ T
Figure 2.1 z
Labelling and

axes convention in
Eurocode 3
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Figure 2.2
Column buckling
curves in

BS EN 1993-1-1

Fortunately there is some pattern to this spread. Clause 6.3.1.2 recognises this by
providing five buckling curves, (see Figure 2.2), each of which can be represented by a

modified Perry-Robertson formula, as follows:

(Cu =X SIS, — 2 S) =10, 11, (2.8)
where
X is the buckling reduction factor

Note that the product of y andfy is equivalent to the compressive strength
of the column, denoted p_in BS 5950-1],

n = a(l—14)
2 =0.2
a is an imperfection factor, according to the buckling curve.

\ Material yielding

0.8 —

06— Curve a, N Elastic buckling

Curve a
0.4 —|

Buckling reduction factor %

Curve b

02| Curve ¢

Curve d

0.0
0.0 0.5 1.0 15 20 25

Non-dimensional slenderness A

The coefficient 5 is an imperfection parameter dependent on the type of section and
the method of forming (i.e. hot-finished, cold-formed or welded), and is related to the
slenderness of the column. The original Perry formula (without /TO) was based on
the onset of yielding at any point in the cross-section of the column. Inclusion of a
limiting slenderness Io (below which column buckling is insignificant) and values of
the imperfection factor & determined from tests allows for actual column failure (not

necessarily first yield).

Table 6.1 of BS EN 1993-1-1 defines the five design curves (a,, a, b, ¢ and d) by
their values for the imperfection factor o (0.13, 0.21, 0.34, 0.49 and 0.76). Solving
Equation (2.8) (lower root) gives:



Table 2.2

Column buckling
curves & imperfection
factors ., based on
Tables 6.1 and 6.2 of
BS EN 1993-1-1

1

= but y<1 2.9
DD - 1 X (2:9)

in which @ is given in Clause 6.3.1.2 as:

®=0.5[1+n+721=0.51+a(1-02)+ 7] (2.10)
From the expression for 7, it follows that the buckling reduction factor y = 1.0 when

A= /TO, meaning that below this limiting slenderness the column is sufficiently stocky
that no significant reduction in cross-section resistance occurs. In such a case, the
characteristic value of the compressive resistance of the column is given by the
product Afy, provided the cross-section itself is not Class 4.

For the general case, the design buckling resistance of a compression member N, . is
defined in Clause 6.3.1.1 as:

2 Af, .
== (for Class 1, 2 and 3 cross-sections) (2.11)

Ml

b,Rd

where y is determined, for the relevant buckling mode and buckling curve, from
Equation (2.9) and y,,, is the partial safety factor for member buckling (= 1.0
according to NA.2.15).

Selection of the appropriate curve is made with reference to Table 6.2 of

BS EN 1993-1-1. Essentially, sections with low imperfections and low residual stress,
which perform well as columns, are designed using a high curve, while sections

that perform less well are designed using one of the lower curves. For the more
commonly used section types and steel grades (excluding S460), the requirements of
BS EN 1993-1-1 in terms of buckling curve and corresponding imperfection factor o
(from Table 6.1 of BS EN 1993-1-1) are summarised in Table 2.2. For buckling curves
for grade S460, refer to Table 6.2 of BS EN 1993-1-1.

For angles, a = 0.34 (curve b) and for channels, a = 0.49 (curve c). For welded sections,
curve b, c or d is applicable depending on material thickness, weld size, axis of
buckling and material strength (see Table 6.2 of BS EN 1993-1-1).

THICKNESS BUCKLING BUCKLING IMPERFECTION
SECTION TYPE RANGE AXIS CURVE FACTOR
(mm) (UP TO S420) o
Major (y- b 0.34
UKC t.< 100 il
f Minor (z-2) c 0.49
Major (y-y) a 0.21
<40 ,
Minor (z-z) b 0.34
UKe Major (y-y) b 0.34
ajor (y-y .
40 <1, <100 -
Minor (z-z) c 0.49
Hot finished Any Any a 0.21

hollow section
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The influence of varying end conditions and lateral restraints may be accounted for
through the effective length concept. The buckling length of a column L_ = kL, where
L is the length of the column between points of effective lateral restraint and & is the
effective length parameter, values of which are provided in this guide.

For flexural buckling, the Eurocode 3 column design process therefore consists of the

following steps:

= Select trial section

= Determine the buckling length of the column L _ in the y and z directions

- Calculate 4 = (L, /i)/4, (equivalentto A = \/m ) in the y and z directions
(using the appropriate value of i)

= Select appropriate buckling curve (a,, a, b, c, or d) and corresponding
imperfection factor o

= Obtain buckling reduction factor y for each direction and select lower value

= Calculate Nb,RL| = ;(Afy/yM1 and verify adequacy for resisting the design compression force.

For checking torsional and flexural torsional buckling, the process is the same, except
that non-dimensional slenderness should be obtained from Equation (2.4) on the basis
of the elastic critical force for each mode. Further guidance and design examples are

given in other publications, such as Designers’ Guide to EN 1993-1-11€,
2.2 Beam buckling

2.2.1 Elastic critical moment

Beams of open section bent in their stiffer principal plane are susceptible to a type
of buckling involving a combination of lateral deflection and twist as illustrated in
Figure 2.3. This is known as lateral torsional buckling. An approach similar to that for
the Euler buckling of struts may be used to determine the elastic critical moment M .
For the idealized case of loading and support, taken to be uniform single curvature
bending and beam ends that cannot deflect vertically or laterally or twist (but are
provided with no other restraining effects) for a beam that is symmetric about the
major axis, the expression for the elastic critical moment M __is obtained as:

2
b n El
M_==EI GI /1+—W
Y L’GI, (2.12)

where

E is the modulus of elasticity

1, is the minor (z-z) axis second moment of area of the section
G is the shear modulus

I, is the torsion constant of the section

1, is the warping constant of the section

L is the length of the beam.



Figure 2.3
Deformations u and ¢
associated with lateral

torsional buckling

/ Note: Displacement of tension
/ flange is exaggerated
/ for clarity

For non-uniform bending and differing degrees of end restraint against rotation on
plan, this expression is extended to:

n n’El
M_=C —.\EILGI. [1+——
cr lkL z T (kL)zG[T (213)

where

C, is the equivalent uniform moment factor and accounts for the shape of the
bending moment diagram, as discussed in Section 2.4.

k is an effective length parameter, values of which are given in Section 3

of this guide.

A more general expression that allows for the shape of the bending moment diagram,
different end restraint conditions, warping restraints, initial curvature and the level at
which the load is applied is given in NCCI SNOO2"! as:

2EI kY I (kL)YGI
«=C n—z — —W+(2)—T+(szg)2 -C,z, (2.14)
(kL) g\ \\k, ) I, w°El,
where
g allows for in-plane curvature of the beam prior to buckling and is given by

1
g= [I—I—ZJ or may conservatively be taken as unity.
y
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k is a warping restraint parameter; where no warping restraint is provided,
and as a conservative assumption when the degree of warping restraint is
uncertain, k_should be taken as unity

z is the distance between the level of application of the loading and the shear
centre; z, is positive for destabilizing loads applied above the shear centre

C is a parameter associated with the load level and is dependent on

the shape of the bending moment diagram (see Section 2.5 and

NCCI SNOO3 #)),

A useful tool for the determination of the elastic buckling moment M_ for numerous
section types, loading configurations and support conditions is also available in the
form of the freely downloadable software LTBeam®.. Practical advice on the use of this

software has also been published 1%,

2.2.2 Lateral torsional buckling resistance

The relationship between the elastic critical buckling moment M and the design
buckling resistance moment M, ., is defined in Clause 6.3.2.1 as:

/4

My = 2000 2 (2.15)
Vi

where

Xir is the reduction factor for lateral torsional buckling (Equation (2.16))

Wy is the major axis section modulus - Wply (plastic section modulus) for

Class 1 and 2 sections, WeLy (elastic section modulus) for Class 3 sections
and I, (effective section modulus) for Class 4 sections
o is the partial safety factor for member buckling, taken as 1.0 for buildings.

The relationship is similar to that between N_and N, ,, for a column.

For beams, there is a choice between two sets of lateral torsional buckling curves -
these are set out in Clause 6.3.2.2 for the ‘general case’, which may be applied to any
section type, and Clause 6.3.2.3 for ‘rolled or equivalent welded sections’ (equivalent
welded sections being those of similar size and proportions to standard rolled sections).

For the general case, the buckling curves are given in Table 6.4 of BS EN 1993-1-1 and
the reduction factor for lateral torsional buckling is given as:

1

Xir = = but . <1 2.16
v (DLT + \/(I)iT - }“LZT A ( )

in which

@, =0.5[1+n,5 +251=0.5[1+0; (Ar —0.2)+ A% ] (2.17)

where « is the imperfection factor given by Table 6.3 and /TLT is the non-dimensional

slenderness of the beam, defined, analogously to columns, by the square root of the



ratio of its cross-section major (y-y) axis bending resistance Wyfy to its elastic buckling
moment M_, as given by Equation (2.18).

_ W[
dp = /# (2.18)

Although the ‘default’ plateau length (i.e. the non-dimensional slenderness below
which the full in-plane bending moment resistance may be achieved) is set at 0.2 in
Clause 6.3.2.2(1), a concession that allows lateral torsional buckling effects to be
ignored up to a slenderness of /Tu,o is given in Clause 6.3.2.2(4). /TLT’O is defined in
Clause 6.3.2.3 and its value is given in NA.2.17 as 0.4 for all rolled sections, including
hollow sections; this generates a step in the buckling curves at this value. For welded
sections, 1, , is set at 0.2 in NA.2.17.

For rolled or equivalent welded sections, the modified buckling curves

(Equations (2.19) and (2.20)) given in Clause 6.3.2.3 of BS EN 1993-1-1 may be
applied. Reference is now made to Table 6.5 of BS EN 1993-1-1 for the selection
of buckling curves for different section types, but note that this table is replaced in

NA.2.17. The reduction factor for lateral torsional buckling is given in Clause 6.3.2.3 as:

! Xir <1.0
X = = but 1 (2.19)
v D+ D - B T <53
LT
in which
@ =0.5[1+n,; + B 1=0.5[1+0t (g —Aire)+ BAs] (2.20)

The values of Zm,o and p are defined in NA.2.17, with /TLT,O being as described above,
while B is set at 0.75 for all rolled sections and 1.0 for welded sections. Generally, more
favourable results are derived from Clause 6.3.2.3 than Clause 6.3.2.2, but owing to the
different choice of buckling curves for the two cases (Table 6.5 as modified by the UK

National Annex and Table 6.4, respectively), this is not always true %,

An additional source of enhanced economy for rolled or equivalent welded sections

is available through the ffactor, which may be used to derive a modified buckling
reduction factor z,.. ., as described in Clause 6.3.2.3 of BS EN 1993-1-1. Adopting
Xirmoa 1S @lWays beneficial, so it could be safely ignored. Further analysis and discussion

of the choice of lateral torsional buckling curves is given in Reference 11.

2.2.3 Simplified assessment of buckling resistance

A simplified design method for assessing the lateral stability of beams in buildings with
discrete restraints to the compression flange is given in Clause 6.3.2.4. In this method,
the lateral buckling response of the compression flange of the beam plus one third of
the compressed portion of the web, analysed as a strut, is assumed to represent the
lateral torsional buckling behaviour of the beam. Further discussion of the method is
given in Reference 6.

13
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2.3 Simplified determination of slenderness

The basic definition of non-dimensional beam slenderness /TLT (Equation (2.18)) requires
the explicit calculation of M_, given, for the most general case, by Equation (2.14). Use
of this equation will generally lead to the most accurate assessment of lateral torsional
buckling resistance and hence the most economic design. There are, however, a number
of simplifications that can be made in the determination of ILT that will greatly expedite
the calculation process, often with little loss of economy. These simplifications are
described in NCCI SNOO2 [ and are summarised below. A number of the simplifications

relate specifically to doubly-symmetric I sections.

As an alternative to Equation (2.18), the non-dimensional beam slenderness /TLT may

be taken as:

_ 1 _

Ay = EUVDAZ\/[?W (2.21)
C, is a factor that allows for the shape of the bending moment diagram and is

discussed in Section 2.4. It may be conservatively taken as equal to 1.0.

U is a parameter that depends on section geometry, given by:
w.g |1
U — ply z
1 7 (2.22)

w

where all symbols are as previously defined.

For UKB and UKC sections, values of U range between about 0.84 and 0.90;
U = 0.9 is therefore a suitable conservative upper bound for such sections.
The parameter g is defined in Section 2.2.1.

14 is a parameter related to slenderness, and is given in full by:
1
V= = (2.23)
k A2 , 1
— | * £ +(C =
4[ij WE Al Gz 7
G I, I,

the symbols for which are defined in Section 2.2.1.
For doubly-symmetric hot-rolled UKB and UKC sections, and for cases where
the loading is not destabilizing, ¥ may be conservatively simplified to:

I S (2.24)

2
41+L 22
20\ h/t,

For all sections symmetric about the major axis and not subjected to

destabilizing loading, " may be conservatively taken as equal to 1.0.
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Table 2.3
T for different
steel grades

D is a destabilizing parameter to allow for destabilizing loads (i.e. loads

applied above the shear centre of the beam, where the load can move with

the beam as it buckles), given by:

pe__ 1 (2.25)

1
2 z
1-V szg /

w

Destabilizing loads are discussed in Section 2.5. For non-destabilizing
loads, D =1.0.

A, is the minor axis non-dimensional slenderness of the member, given by
I[ =),/ 2, inwhich A, =kL/i,, where k is an effective length parameter,
values of which are given in Section 3 of this guide.

B, is a parameter that allows for the classification of the cross-section; for

Class 1 and 2 sections, =1 while for Class 3 sections B, =W, /W, .

For a hot-rolled doubly-symmetric I or H section with lateral restraints to the compression
flange at both ends of the segment under consideration and with no destabilizing

loads, the non-dimensional beam slenderness /TLT may be conservatively obtained

from Table 2.3. Table 2.3 has been derived on the basis of Equation (2.21) with the
conservative assumptions of C, = 1.0, U= 0.9, V'=1.0, D= 1.0 and \/E =1.0.

S235 S275 S355
—- _L/i - _Lli — Lli
104 96 g

Note that the simplified method described in this Section can lead to more favourable
results if in-plane curvature prior to buckling is accounted for in the calculation of the
parameter U (through the parameter g described in Section 2.2.1). The slenderness
would be less than that derived from Equation (2.18) using a simplified value of M_

that neglects this beneficial effect.

2.4 Equivalent uniform moment factors C,

The distribution of bending moments along the length of a beam influences the value
of the elastic critical moment. Allowance for the variation of bending moments on the
elastic buckling moment M_ or slenderness /TLT of a beam may be made by means of
the equivalent uniform moment factor C| (see Equations (2.14) and (2.21)). Uniform
bending moment is the most severe scenario, for which C, = 1. Taking C, = 1 is also
conservative for other patterns of moment, but may become overly conservative when

the bending moment distribution varies significantly from uniform.

Recommended values of C, and 1//C, are given in Table 2.4 and Table 2.5. These

values are taken from P362 2, Similar values are also available elsewhere including

15
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Table 2.4

Values of of C|
and 1/\/Cl for end
moment loading

Table 2.5
Values of C | and

1/\/Cl for cases with

16

transverse loading

v C, 1VC,
1.00 1.00 1.00
0.75 117 0.92
0.50 1.36 0.86 ( : . )
A a
0.25 1.56 0.80
| |
0.00 1.77 0.75 | |
-0.25 2.00 0.71 Heyen
-0.50 2.24 0.67
0.75 2.49 0.63
-1.00 2.76 0.60
LOADING AND
SUPPORT CONDITIONs  BENDING MOMENT DIAGRAM  C, INC,
I T T N O O O O O O IO 113 094
N |
;'000090'000090'0000; 260 062
i W 1.35 0.86
| —— ]

i i 1 = 1.69 0.77

in NCCI SNOO2 ! but differences between sources will exist owing to the approximate
(numerical) origins of the values. Guidance on effective length parameters for beams is
provided in the NCCI SNOO9 *3); further discussion is contained in Section 3.1.

2.5 Destabilizing loads

When a beam is loaded vertically such that the load can move with the beam as it
buckles, the level of application of the load relative to the shear centre of the beam
becomes important. Note that for doubly-symmetric sections, the shear centre and
the centroid coincide. Loads applied above the shear centre of the beam have a
‘destabilizing’ effect, resulting in lower values of Mcr, while loads applied below the

shear centre have a ‘stabilizing’ effect, resulting in higher values of M _.

Introducing the non-dimensional load level parameter n = zzg/hf, in which 4 is
the distance between the centres of the flanges of the beam, three cases may be

considered for a simply-supported beam with a uniformly distributed load:

1. load applied at the shear centre (y = 0),
2. load applied at the level of the top flange (7 = 1), and
3. load applied at the level of the bottom flange (3 = —1).



Figure 2.4

Effect of load level
on elastic buckling
moment Mﬂ_

The elastic buckling moments M_ for cases (2) and (3) may be normalized by
that for case (1), denoted M
expressed as:

0 to illustrate the effect of load level, which is then

1

1+—+(Cn) ~Cn
M, _V « (2.26)
crn=0 1+l
K
where
xk  =(n’El,/GI.L’) (this is n* times the parameter k in SNOO3).

For a value of x =0, SNOO3 gives the values of C2 as:

C = 0.454 for a simply-supported beam with a uniformly distributed load

2

C, =0.630 for a simply-supported beam with a central point load

Curves showing the variation of MCr/Mm]:O are shown in Figure 2.4 for a range of values

of k. Values of x will typically range between about 0.4 and 2.

Bottom flange loading (7] =-1)

=0

M /M

Shear centre loading (77 =0)

Top flange loading (17 =1)

K=(T*El, /Gl L*)

Figure 2.4 shows that top flange loading gives lower values for M_ for all geometries,
though the effect of load level becomes less pronounced as the member length increases.
The destabilizing effects may be explained with reference to Figure 2.5. As the twisting
associated with buckling starts, so the line of action of the load becomes eccentric to the
beam’s shear centre. This induces a destabilizing effect in the form of a moment equal to
F X e where e is the eccentricity of the load F. As buckling develops this destabilizing effect

increases (since e increases), thereby tending to accelerate the process.
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Figure 2.5
Effect of load level

F
Zg
——
Loading at: a. Shear centre b. Top flange c. Above top flange

The destabilizing effect may be assessed accurately by including the level of load
application above the shear centre z, in the calculation of M_ (Equation (2.14)), or by
inclusion of the full destabilizing parameter D (Equation (2.25)) in the calculation of

4., (Equation (2.21)) and hence M, i Values for the destabilizing parameter D for
a range of support and loading scenarios may be found in the NCCI SNOO9 3!, For
example, for the basic case of a beam whose ends are prevented from twisting and
deflecting laterally with no additional end restraint (so both flanges are free to rotate
on plan), D = 1.2 to reflect the influence of top flange loading. This approximation
generally gives a higher value of /TLT (i.e. is more conservative) than that derived from

Equation (2.25) or (2.14).

It is, of course, fundamental to the discussion in this Section that the loading is applied
in such a way that as the beam tends to buckle sideways the loading can move freely
with it. If the load cannot move in this way the eccentricity e shown in Figure 2.5(b) will
not develop and no destabilizing effect will be present. Thus in practice, destabilizing
loads are only considered in cases for which the applied loading offers no resistance to
lateral movement, e.g. a free standing brick wall on a beam. Normal loads from floors

do not constitute a destabilizing load.
2.6 Effect of intermediate lateral restraint

2.6.1 Restraint of columns

The behaviour of both columns and beams when provided with some form of
intermediate lateral restraint may best be illustrated by taking the example of an axially
loaded column and considering two situations of a central restraint and a distributed
restraint, as illustrated in Figure 2.6. The central ‘spring’ restraint may or may not
constrain the deformation of the column at mid-height. Considering the equilibrium of a
centrally braced column of length L leads to the approximate relationship between the

enhanced elastic critical force N_ and the stiffness of the spring restraint K as:

N, =N, +%KTL (2.27)



Figure 2.6
Column with
intermediate

elastic restraint

where

_ T El

N, = , the Euler load of the unrestrained column.

If K, exceeds a value of:

_16n°El 16N,

Ky L L

(2.28)

the column will buckle in the second mode (two half sine waves), with the result
that further increases in K will not produce corresponding increases in Ncr[14v15].

The column therefore effectively becomes restrained at its mid-height, and N_ = 4N
(see Figure 2.6).

Ncr 4NE Ncr
\/  /
/ D K; 6/2 N\
L/2
K: o
12 L
W_E - ANV
\ /
L2 Stiffness K; V]
4/\/L
K: 6/2
A A A
Stiffness k;
Ncr 4NE Ncr
a. Braced first mode b. Second mode c. Column with elastic restraints

Single discrete restraint Continuous restraint

When a perfect column buckles in the second mode there is no force in the restraint.
However, since columns are not perfectly straight, the spring stiffness K, should be
considerably higher than the value given by Equation (2.28) in order that the springs
are fully effective as restraints and the forces that they attract are not excessive. A
number of analytical studies of imperfect columns with intermediate elastic restraints
have been performed,*¢1"18 and relationships between the forces experienced by the

restraints and the load in the column have been derived.
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Figure 2.7
Relationship between
restraint force and
stiffness for various
levels of axial

load in a centrally
restrained column

20

For a pin-ended column with a single central intermediate lateral restraint and a
sinusoidal imperfection of amplitude e, the ratio of the restraint force /' to the axial

load N in the member is given by 7

F_ o ellL 1

(2.29)

N (NE—IJ N 1 n [N 1
+ tan| — [— |——
N K.L 2nJN/N, 2\N, ) 4

Similar expressions for other scenarios, including non-central restraints, multiple
restraints and different imperfections and end conditions are also available [*°.,

Figure 2.7 shows the relationship between restraint force F and stiffness K. for
various levels of axial load N on a centrally restrained column. The graph has been
derived from Equation (2.29), assuming the basic initial bow imperfection e, = L/500
given in Section 5.3.3 of BS EN 1993-1-1 when a single member is to be restrained;
the typical fabrication tolerance for hot-rolled steelwork is L/1000. From Figure 2.7, it
may be observed that a restraint stiffness of the minimum theoretical value required
for a perfect column to buckle into two half sine waves (K = 16N_/L) results in large
restraint forces in the presence of an imperfection, and that to avoid such large
restraint forces, the restraint stiffness has to be significantly greater than this value.
This analysis provides a useful indication of the degree of bracing stiffness necessary
in practice to restrain members against buckling.

0.035 —

0.030 —
0.025

|
0.020

0.015 —

Non-dimensional restraint force F/N

E e

0.010 —

0.005 —

0.000

T T T T T T T 1
0 20 40 60 80 100 120 140 160

Non-dimensional restraint stiffness K. L/N,

Note:  These curves have been derived assuming that ¢, = L/500



Figure 2.8

Effect of bracing
stiffness on

critical load for the
arrangement shown
in Figure 2.6

From Figure 2.7 it may be seen that restraint forces begin to grow rapidly for non-
dimensional restraint stiffnesses K_L/N, of less than about 60, while a value of
approximately 120 is required to limit the restraint forces to just beyond 1% of the axial
load in the column. Noting that the bending stiffness of a column (acting as a beam)

is 48EI/L?, the non-dimensional restraint stiffness of 120 corresponds to a restraint
stiffness of about 25 times this value, or 7.5 times the theoretical stiffness required to
force a perfect, centrally restrained column into the second mode.

For the case of continuous elastic restraint shown in Figure 2.6(c), the relationship

between N_and k_ is defined ™ as follows:

2 2 2
_ > > m kTL /TC ]\7E 2.30
N, = Nk, I? / TN, — + — (2.30)
T E

where k_ is the stiffness of restraint per unit length of the column and m is the number

of half-waves into which the column buckles.

In this case, N_ will continue to increase with increasing values of k_as shown in

Figure 2.8. Moreover, progressive changes in buckled shape will occur, with the column
buckling into an increasing number of half-waves as the stiffness of the restraint is
increased. Thus no equivalent of a limiting value of K as defined by Equation (2.28) exists.

However, a lower bound result for all cases, as shown in Figure 2.8, is obtained from:

N, =2JkEl (2.31)

For a series of discrete restraints at a spacing L, the stiffness & L, required to achieve
N_ = m’El/L . is given by rearrangement of Equation (2.31) as:

kL, =mEIAL} =243 EI/L}

N, /N¢

Restraint stiffness parameter (k,L*/n” N,)"?

21
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Figure 2.9
Buckling about
a restrained axis
adjacent to the
tension flange

It may be noted that a minimum stiffness for intermediate restraints of 40 E//L * is
given in PD 6695-22% Clause 5.3.

2.6.2 Restraint of beams

Similar analyses may be performed for beams?! to obtain analogous relationships
between M_ and restraint stiffness. In this case, the problem is inherently more
complex because restraints may act to limit lateral deflection, twist, or both, and

beams may be subject to a variety of different forms of loading.

However, the different buckling characteristics of beams in comparison to columns leads
to an appropriate minimum restraint stiffness of around 10 times the lateral bending

stiffness of the beam when bracings are attached to the compression flange 22,

2.7 Compression or tension flange restraints

Cases of practical significance for beams are often likely to involve the restraint being
provided to one of the flanges through attachment to a floor or roof. Often this restraint
may be assumed to be continuous even if the actual arrangement is one of a series of
interconnections at close intervals. For a simply supported beam under gravity loading
the restraining effect will be a maximum when the top (compression) flange is laterally
restrained, or sufficient torsional restraint is provided that the top flange cannot
displace laterally. In many cases, the beam may be designed as being fully restrained,
achieving its full in-plane bending resistance.

Frequently, restraint is provided only to the tension flange. An example is a beam
supporting roof sheeting which is under suction loading. While the restraining effect is
likely to be significantly reduced, benefits, in terms of improved member stability, may
still be derived. If the tension flange restraint has high lateral stiffness, but insignificant
torsional stiffness, buckling of the type illustrated in Figure 2.9 may occur, with the
beam simply twisting about the restrained longjtudinal axis?®. Clearly no change in
behaviour will result from any further increase in lateral stiffness of the bracing. Some
benefit could, however, be achieved if the bracing were also able to supply a measure of
torsional restraint, thereby further restricting the torsional deformations of the beam.

L
\ \

Lateral restraints — [P

* *

GI \/
T — N - )
N
-\
\
\
Tension flange |
\ n
Compression flange

<




One case of particular practical significance is that of a portal frame rafter supported
laterally at relatively close intervals by purlins whose axial stiffness is sufficient to

prevent lateral deflection at each braced point. Neglecting axial force in the rafter and
assuming that the bending stiffness of the purlin plus its connection offers rotational

restraint to the rafter, then the rafter may buckle in one of two modes 3

1. an overall buckling mode involving twisting about the braced axis at a value of M_ .

given by:
| | nwa’El, mn’El, L
o T = Z b Lf b Lf + GIT + C@,k 5_71-[2 (232)
where
n, is the number of half-waves within the length L for which M_, is a minimum
a is the distance between the restrained longitudinal axis (e.g. the
centroid of the purlins) and the shear centre of the member
Cy, is the rotational stiffness (per unit length of beam) provided by the
restraint (e.g. purlins and roof sheeting). Guidance on the determination
of Cy, is given in Clause BB.2.2 of BS EN 1993-1-1.
L is the length of member between effective torsional restraints.

2. between braced points in a lateral torsional buckling mode at a value of M_ given
by Equation (2.33), which is the same as Equation (2.12) with L replaced by s,
where s is the spacing between the intermediate tension flange restraints.

e ’El
Mcr = E EIZGIT 1+ Tcz = (233)
s s Gl

Conservatively assuming the torsional stiffness of the intermediate tension flange
restraints to be zero and taking n, as unity, the elastic buckling moment of a uniform

I section member with equal flanges under uniform bending is given by:

oo {nzazElz n’El,

- + +GI (2.34)
71 R I T}

This equation is applicable to beams or lengths of beam between torsional restraints
(i.e. restraints to both flanges), with intermediate lateral restraints to the tension flange
that are sufficiently closely spaced so that the stability of the beam is maintained
between these intermediate restraints. The latter can be ensured by adjusting the
restraint spacing such that the elastic buckling moment from Equation (2.33), controlled
by the spacing s of the intermediate tension flange restraints, is greater than that from

Equation (2.34), controlled by the distance L, between restraints to both flanges.

Under a linear moment gradient, M_ . may be determined from:

1 1| nd’El, nEl
m 2 2 + 2
¢ 2a L L

Y 4 GI, (2.35)
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where C_accounts for linear moment gradients and may be determined from
Clause BB.3.3.1 of BS EN 1993-1-1 and ¢ accounts for any taper of the beam and may
be determined from Clause BB.3.3.3 of BS EN 1993-1-1.

For a nonlinear moment gradient, M__ is given by:

1 1| n’d’El, nEl
M, =C——| 222 I G, (2.36)
’ ¢ 2a L L

where C accounts for nonlinear moment gradients and may be obtained from
Clause BB.3.3.2 of BS EN 1993-1-1.

The above may be recast in terms of a stable length L, of beam with intermediate tension
flange restraint between points of torsional restraint (i.e. restraint to both flanges). For
uniform moment, lateral torsional buckling effects may be ignored provided the length of
beam between adjacent torsional restraints does not exceed the maximum stable length
L, given by Equation (2.37), which is Equation (BB.6) of BS EN 1993-1-1.

(5.4 + 7600]3 J(h jiz
L = £ zf (2.37)
\/5'4[];1}1} -
E 1t

Under a linear moment gradient and axial compression, the length of the member

between torsional restraints should not exceed the maximum stable length L, given by
Equation (2.38), which is Equation (BB.7) of BS EN 1993-1-1.

M
L =JC,L, (—P"Y’Rk ] (2.38)

M Nyrk T aNyg,

where C_accounts for linear moment gradients and may be obtained from
Clause BB.3.3.2 of BS EN 1993-1-1, M

ply,Rk
resistance of the cross-section about the y-y axis (which is equal to the design plastic

is the characteristic plastic moment

moment resistance M when y, = 1.0, as is the case in both BS EN 1993-1-1 and

pLy.Rd

the UK National Annex) and M, is the characteristic plastic moment resistance of

the cross-section about the y-y axis with reduction due to the axial load N,

For a nonlinear moment gradient, lateral torsional buckling may be ignored, provided
the length of the member between torsional restraints does not exceed the maximum
stable length L, given by Equation (2.39), which is Equation (BB.8) in BS EN 1993-1-1.

L =\C1L, (2.39)

Stability of the member between the intermediate tension flange restraints themselves
may also be verified by considering a stable member length. Lateral torsional

buckling between intermediate tension flange restraints may be ignored provided the



spacing s of the restraints does not exceed the maximum stable length L _, given by
Equation (2.40), which is Equation (BB.5) of BS EN 1993-1-1. Units of N and mm must
be used in this equation.

38i

z

L, = - - (2.40)
1 (NEd j+ 1 Wpl,y fy
574\ 4 ) 756C? | AI, |\ 235

where C| may be taken from Table 2.4 or Table 2.5.

2.8 Requirements for restraint stiffness and strength

For bracing against buckling, two requirements may be identified for all restraint systems:

1. Sufficient stiffness to increase the buckling load of the restrained member to the
desired level by limiting the buckling deformations.
2. Sufficient strength to resist the loads transmitted as a result of restricting the

buckling deformations.

The interrelationship between restraint stiffness and strength was highlighted in
Figure 2.7, where it may be seen that the greater the stiffness of the restraint, the
smaller its required strength 2%, Despite the importance of both strength and stiffness,
many structural design codes provide only strength requirements (e.g. BS 5950-1) and

it is assumed that a member of such strength will also possess sufficient stiffness.

BS EN 1993-1-1 defines an initial geometric imperfection for restrained members
(Clause 5.3.3(1) of BS EN 1993-1-1) and gives a local force at splices (Clause 5.3.3(4)
of BS EN 1993-1-1). The initial geometric imperfection may be replaced by an
equivalent stabilizing force ¢, defined by Equation 5.13 of BS EN 1993-1-1, which is
applied as a uniformly distributed load to be resisted by the bracing system. The local
force at splices and the restraint force g, arising from the initial geometric imperfection
need not be applied together but both should be considered in conjunction with

any external loads (e.g. wind load) on the bracing system (see Clause 5.3.3(5) of

BS EN 1993-1-1). Braces at plastic hinge locations have more onerous requirements,
as discussed in Section 5.

The equivalent stabilizing force ¢, is defined in Clause 5.3.3(2) of BS EN 1993-1-1 as:

e, +0
4, :ZNEd8—° a (2.41)

LZ
in which N, is the axial force in the compression flange of the beam, taken as
Ny, = My, / h, where M_ is the maximum moment in the beam and 4 is the overall
beam depth, ¢ is the initial imperfection in the beam, 5q is the deflection of the bracing
system under g, plus any external loads and L is the length of the beam. For restraint
to multiple beams, a summation of the equivalent stability forces is made for all beams

being supported by the bracing system under consideration.
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The member imperfection ¢, is defined by Equation 5.12 of BS EN 1993-1-1 as:
e, =a,L/500 (2.42)

where a_ is a reduction factor when multiple beams are being restrained, given in
Clause 5.3.3(1) of BS EN 1993-1-1 as:

a, = 0.5(1+lj (2.43)
m

in which m is the number of members to be restrained.

Three analysis options are available for determining restraint forces due to initial

geometric imperfections in the restrained members:

= First order analysis of bracing system under equivalent stabilizing force g, (5Cl #0)
and any external loads

= Second order analysis of bracing system with equivalent stabilizing force ¢, (cSq =0)
and any external loads

= Second order analysis of bracing system with initial geometric imperfection ¢, and

any external loads.

Of the three options, the first will typically be favoured since it does not require initial
geometric imperfections to be incorporated into the structural model and it does not
require second order analysis. This is the approach employed in Worked Example 1.
The approach does, however, require iteration since the equivalent stabilizing force
depends on the deflection of the bracing system. Two steps will generally be sufficient.
In the first step, the in-plane deflection of the bracing system may be found under g,
(with 5q =0) and any external loads. In the second step, having now determined 5q,

a revised equivalent stabilizing force may be calculated. A flowchart to describe this

process is given in SF024 25,

Considering the basic imperfection of L/500 and assuming (for illustration purposes)
the bracing system to be infinitely stiff, such that 5q is zero, leads to a total force to be
restrained (g L) of 1.6% of N, (from Equation (2.41)). For a beam laterally restrained at
its supports with a single central restraint, this results in a central restraint force of 1%
of N, (with the remaining force being transferred equally to the end supports). It must
be stressed, however, that these restraint forces assume that the bracing system is
infinitely stiff. Since this cannot be the case, actual restraint forces will be greater than
these values and will depend on the stiffness of the bracing system. The influence of
the stiffness of the bracing system has been illustrated in Figure 2.7, where it may be
seen that, in the presence of an imperfection of L/500, the force in a central restraint
tends to approximately 1% of N, for high bracing stiffness (i.e. the same value that
emerges from Equation (2.41) when 5q = 0). However, at lower levels of bracing
stiffness, higher forces arise in the restraints. It is therefore important that account is
taken of the deflection of the bracing system itself. Further, it must be ensured that all



restraint forces are transferred to some ‘stiff’ point in the structure, for example,

to in-plane bracing or concrete core walls.

For design purposes, a useful approach is to assume initially (and subsequently
confirm) that the deflection of the bracing system 5q will be less than a fairly
conservative (i.e. large) value of L/2000; the total resulting equivalent stabilising force
(q,L) is then 2% of N,. Provided that the actual deflection of the bracing system under
this restraint force plus any other external loading (e.g. wind) is less than £/2000, a safe

result will have been achieved and no iteration is required.

27






This section describes a range of practical examples of beams with different end and
intermediate restraint conditions, and illustrates how the rules set out in Eurocode 3,

and introduced in Section 2 of this publication, are applied.

3.1 Endrestraint to beams

Several types of end conditions to beams that are found in practice require a degree
of interpretation when deciding on the effective length L_ (= kL) to be used in
calculating /TLT or M_. One aspect is the (usually) non-quantifiable influence of the
rotational flexibility on plan of the connection between the beam and the columns in
framed construction. Another important consideration is the relative size/stiffness of
the members. The following guidance applies for members typical of medium span

construction (i.e. it does not apply to heavy beams connected to small columns).

Several examples of practical end conditions are shown in Figure 3.1; they have been

grouped as follows:

= Case (1) where the beam flanges may be assumed to be fully restrained on plan
(Figure 3.1(a))
= Case (2) where the flanges are partially restrained on plan (Figure 3.1(b))

= Case (3) where the flanges are free to rotate on plan (Figure 3.1(c)).

Two further cases, not illustrated, are Cases (4) and (5) which are similar to Cases (1)
and (2), respectively, but with restraint applied only to the compression flange at the

beam ends.
Recommended effective length parameters are given in Table 3.1.

= End plate or moment resisting connections with column web stiffeners offer the
most rotational restraint in the minor axis direction and are covered by Case (1).
Where stiffeners are not provided, Case (2) is more appropriate.

= Web cleats or similar connections offer little rotational restraint and are covered
by Case (3).

= Beams built into walls may be considered to be partially restrained.

= Beam-to-beam connections are usually of the form shown in Case (3). Relatively little

rotational restraint is provided at the beam ends.
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a. Case (1): Flanges fully restrained on plan

(]

i. ii.. iii. iv.

b.  Case (2): Flanges partially restrained on plan

L] i [T i

Cleat

L

Figure 3.1 v vi. Vi

Common cases of G Case (3): Flanges free to rotate on plan
restraint at beam ends

= Notches in the beam may affect the restraint offered to the flange of the beam,
causing an increase in its effective length. This is treated as a special case and is
covered in Section 3.4.

= For the destabilizing load condition, the destabilizing parameter D should be taken
as 1.2, otherwise D should be taken as 1.0. Alternatively, if calculating /TLT via
M_, the distance between the applied load and the shear centre z, may be used in
Equation (2.14). See also Section 4 of this guide.

= Where restraint conditions at the beam ends differ, the mean value of k should be used.

30



Table 3.1
Effective length
parameters k

CONDITIONS OF RESTRAINT AT SUPPORTS RESTRAINT CASES k

Compression Both flanges fully restrained Case (1): 0.7

flange laterally against rotation on plan Figure 3.1(a)

restrained.

. . Both flanges partially restrained Case (2): 0.8

Nominal torsional - 5 qainst rotation on plan Figure 3.1(b)

restraint against

rotation about

longitudinal axis. Both flanges free to rotate Case (3): 1.0
on plan Figure 3.1(c)
Compression flange fully restrained Case (4): 0.75
against rotation on plan Figure 3.1(a)*
Compression flange partially Case (5): 0.85
restrained against rotation on plan Figure 3.1(b)*

The above values have been extracted from Table 4.1 of the NCClI SNOO9 (23]
* With compression flange restraint only

3.2 Cantilever beams

The stability of a cantilever is significantly affected by the restraint conditions at
both the support and tip. The influence of destabilizing loading is also pronounced.
Guidance for common support conditions is given in NCCls SNO06 2%’and SNOQ9 1*3;

both are discussed below.

The lateral torsional buckling resistance of a cantilever is determined on the basis
of the member slenderness I]_T, which may be calculated either by means of M
(Equation (2.14)) or more directly through Equation (2.21).

Formulae for the determination of M_ for cantilever beams are given in NCClI SNOOG.
Lateral and torsional restraints are assumed at the support and two conditions of
warping restraint are considered - free or restrained. Both tip loading and distributed
loading acting either individually or in combination are covered; the level of load

application, relative to the shear centre of the beam, is also considered.

Effective length factors k and destabilizing parameters D to be used in the calculation
of member slenderness /TLT (Equation (2.21)) for cantilevers without intermediate
restraints but with a variety of restraint conditions at the support are presented in
NCCI SNOO9, and repeated in Figure 3.2. For normal loading conditions, D = 1.0.

For optimum performance, lateral restraint should be provided to both flanges of
the beam at the support - see Cases (c) and (d) in Figure 3.2. Other cantilever
configurations that provide effective moment continuity and lateral and torsional
restraint at the support, which may be treated similarly to Case (c) in Figure 3.2, are

shown in Figure 3.3.

For cantilevers with intermediate lateral restraints to the compression flange, the
effective length parameter k£ may be taken as 1.0 and the length L should be taken as

the distance between points of adjacent lateral restraint, provided that effective lateral
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RESTRAINT CONDITIONS k D
AT SUPPORT AT TIP*
a) Continuous, with 1) Free 3.0 25
lateral restraint to
top flange
2) Lateral restraint to 2.7 2.8
top flange
3) Torsional restraint 2.4 1.9
r 4) Lateral and 2.1 1.7
torsional restraint
b) Continuous, 1) Free 2.0 25
with partial
torsional restraint
2) Lateral restraint to 1.8 2.8
top flange
3) Torsional restraint 1.6 1.9
L 4) Lateral and 1.4 1.7
torsional restraint
c) Continuous, 1) Free 1.0 25
with lateral and
torsional restraint
2) Lateral restraint to 0.9 2.8
top flange
3) Torsional restraint 0.8 1.9
L 4) Lateral and 0.7 1.7
torsional restraint
d) Restrained laterally, 1) Free 0.8 1.75
torsionally & against
rotation on plan
2) Lateral restraint to 0.7 2.0
top flange
3) Torsional restraint 0.6 1.0
4) Lateral and 0.5 1.0
torsional restraint
*Tip restrain conditions
1) Free 2) Lateral restraintto  3) Torsional restraint  4) Lateral and
top flange torsional restraint

Figure 3.2

Effective length
parameter k and
destabilizing
parameter D for
cantilevers without
intermediate restraint

(not braced on plan) (braced on planinat  (not braced on plan) (braced on plan in at
least one bay) least one bay)
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Figure 3.3

Other cantilever
configurations that
provide effective
moment continuity
and lateral and
torsional restraint at
the support

Figure 3.4

Lateral restraint to
bottom flange only at
end support

LT
>~

Discontinuous cantilever, at same level Cantilever supported from flange of column
as continuous supporting beam

and torsional restraint is present at the support (examples of which are shown in
Case (c) of Figure 3.2 and Figure 3.3) and the load is not destabilizing. (This guidance
is taken from NCCI SNOQQ 13)

3.3 Beam supported at bottom flange only
at the ends

Figure 3.4 illustrates the situation in which lateral restraint is only provided to the
bottom flange of a beam at its end supports, while the top flange is unrestrained. This
may result in distortion of the cross-section with web bending and consequently a
reduction in member buckling resistance. Two cases commonly arise, the first where
there is a positive connection between the bottom flange and the support (e.g. by
bolting) and the second where no such connection exists and the beam simply bears

on the support; the latter case results in a greater reduction in member resistance.

The situation where the only restraint at the support is at the bottom flange (bottom
flange fixed to support) is not covered explicitly by BS EN 1993-1-1 and although there

is currently no relevant NCCI the problem has been investigated (see Buckling of beams
supported on seats?”). The reduced buckling resistance may be accounted for by means
of an increased effective length factor k. The following effective lengths kL may be used

in the calculation of /TLT or M_ (Equation (2.13)) for simply-supported beams.

[

- Support

gl e

Bolt or
anchor

Side view Buckled shape
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Figure 3.5
Notched beam (one
flange notched)

34

In cases where there is positive connection to the bottom flange:

kL =1.0L +2h  for normal loading
kL =1.2L+2h fortop flange loading
where

L = length of beam between supports
h = depth of beam.

In cases where no positive connection between the bottom flange of the beam and the
support is provided, i.e. restraint against torsion is due solely to bearing of the bottom

flange on the supports, then:

kL =12L+2h for normal loading

kL =14L+2h fortop flange loading

3.4 Beams notched at the ends

Notching or coping of the top flange or both flanges of a beam is often required to
enable suitable end connections to be achieved, for example to other beams at right

angles, as shown in Figure 3.5.

Two primary considerations arise as a result of the introduction of notches. The first
relates to local buckling of the notched region of the beam, for which guidance,
derived from References 28 and 29 and also adopted in Reference 30, is given below
(see Section 3.4.1). The second relates to the overall lateral stability of unrestrained
notched beams, where the presence of the notch leads to more flexible end conditions
and therefore a reduction in the lateral torsional buckling resistance of the beam.
Guidance for the latter case, derived from Reference 31 is presented in Section 3.4.2.
Checks for both local buckling of the notched region and laterally stability of
unrestrained notched beams are shown in Worked Example 2.

b1

}A

A
Y
Y



3.4.1 Local buckling of notched region

Provided that the beam is restrained against lateral torsional buckling, no account
need be taken of notch stability if the following conditions are met (see Figure 3.6 for
definition of symbols):

For one flange notched:

d,<h,/2 and,

I <h, for hy, /t,,, <551 (S275 steel)
< % for hy, /t,,, >55.1 (8275 steel)
I, <h, for hy, /t,,, <48.5 (S355 steel)
/] < 1140004, for h,/t,, >48.5 (S355 steel)

" (hbl /Zw,bl)3
For both flanges notched:

Max(dnt’dnb) < hb] /5 and'

I <h, for hy, /2., <55.1 (8275 steel)

< % for hy, /t,, >55.1 (5275 steel)
(hbl /tw,bl)

I <h, for hy, /t,, <485 (S355 steel)
1140004,

< for hy, /t,, >48.5 (S355 steel)

" (hbl /Z‘w,bl)3

Where the notch length ¢ exceeds these limits, either suitable stiffening should be

provided or the notch should be verified using References 28, 29 and 32.

C C

R | |

b f

h h
I
dcz
]
| bl
Figure 3.6 c
Details of a.  One flange notched b.  Both flanges notched

notched region
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3.4.2 Lateral stability of unrestrained notched beams

When a notched beam is laterally unrestrained, its overall lateral torsional buckling
resistance should be verified. The following guidance is taken from Annex D of
Reference 31 and applies to beams with one flange (the top flange) or both flanges
notched. To reflect the reduced end restraint brought about by the introduction of
notches, a reduced elastic buckling moment Mcr,n may be determined and subsequently
used in the calculation of /TLT from Equation (2.18). The reduced elastic buckling
moment Mcr’n may be calculated as:

M, =nM, (3.1)

in which M_is the elastic buckling moment of the unnotched beam (Equation (2.14))

and r_is the reduction factor obtained from Equation (3.2) for UKB sections.

o |EI,

r=1.0--2 (3.2)
C.L\ GI;
where
C, is the equivalent uniform moment factor from Table 2.4 or Table 2.5
L is the length of the notched beam - see Figure 3.5.
For normal loading:
With notching of the top flange:
—Lﬁ_% dcl < 1
ah—d,) h for ) <0.15
(3.3)
h 1.5¢ d,
2(h ) P for 7>0.15
With notching of both flanges:
_ h N 3.5¢ (3.4)
3(h-[d,+d,]) h
For top flange loading:
With notching of the top flange:
_h 2
+ 2 for dq <0.15
2(h ) h h
(3.5)
— L.’.E dcl 1
15(h—d.)  h for ) >0.15
With notching of both flanges:
h . (3.6)

C2(h—-[d, +d,])



Figure 3.7
Intermediate
restraints to single or
multiple beams

3.5 Beams with intermediate restraint to
compression flange

A common scenario in steel construction is where one or more parallel rows of simply
supported beams are braced at the level of their top flange, with the bracing acting in
tension or compression to transfer the load to a stiff lateral support (e.g. a plan bracing
system). In general, the function of the restraints is to prevent significant lateral deflection
of the beam at the bracing points, such that the effective buckling length of the beam is
based on the longitudinal distance between the restraints. To perform such a role, the

restraints require a minimum strength and stiffness, as discussed in Section 2.8.

BS EN 1993-1-1 allows for the stiffness of the bracing system by considering its
deflection 5q under the equivalent stabilizing force g, and any external loads. If the
lateral support can be regarded as rigid as shown in Figure 3.7(a) and (b), then the
deflection of the restraints is solely a function of the axial stiffness of the struts/
ties. In cases where the bracing action is provided by a linear system of components,

——7 — — - - - - —
Z
Lateral
Restraint
a. Single beams
 /  /  /
— —7v — — — — — — — — —7v — — — — — — — — —7v — — — — — — —
%
Lateral

Restraint

b.  Multiple beams

Spring

Lateral
Restraint

c.  Equivalent spring restraints
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represented by springs acting in series as shown in Figure 3.7(c), then the combined

deflection of the bracing system (Sq at a section should be obtained from:

0, =0y +0,+0,+ ...

where

5q], 6q2, 6q3 etc. are the individual in-plane deflections of the components in the system.

3.5.1 Single beams

The following guidance, based on Clause 5.3.3 of BS EN 1993-1-1, is given for single beams.

The design force for a single brace at any location = ¢ L, plus any additional forces due
to external actions, where ¢, is the equivalent stabilizing force and L is the length of the

restrained beam (see also Section 2.8).

When more than one brace along the length of the beam is used, each should be designed

to resist a force of not less than 5¢,L/8, plus any additional forces due to external actions.

Determination of restraint forces is, in general, an iterative process, due to the
dependence of the forces on the level of deflection of the bracing system. This
process is described in Section 2.8 and illustrated in Worked Example 3. However, the
deflections of typical bracing systems in buildings are unlikely to exceed L/2000. If this
value is assumed for 5q, restraint forces of 2.0% of the maximum design force in the
compression flange of the beam for a single restraint emerge from Equation (2.41)
(for two or more braces, 1.25% for each restraint), to which any additional forces due
to external actions should be added. No iteration is required, provided that the actual
deflection of the bracing system (Sq (under the above restraint forces plus any additional
forces due to external actions) is less than L/2000. Should 5q exceed L/2000, then the
obtained restraint forces will be unsafe and iteration, by substituting the actual value
of 5q into Equation (2.41), will be required.

If the above conditions are met, the beam may be designed for an effective length L
equal to the distance between braced points. The bracing members not meeting these

conditions should be considered to be ineffective.
The lateral support must be capable of safely withstanding the bracing force transferred to it.

Where there is a splice in a beam, the bracing system should be able to resist the
effects of a lateral force equal to 1% of the design force in the compression flange at

the splice location.

3.5.2 Multiple beams

For restraints to multiple beams, the following guidance is given.

The bracing should be designed for the sum of the restraint forces for the individual
beams, which are determined as in Section 3.5.1 but with a reduced imperfection
defined by «_ (Equation (2.43)).



Figure 3.8
Plan bracing

/# Columns

Viai I I I I I
ain beams to o braci
be restrained ~ j\ — i’oa;ro:/a;;;ng

lateral support

I

I I \E
m=5; o,.=077

Bracing to compression
flanges of main beams

As a general rule, the lateral stiffness of the restraining system should exceed 25 times
the combined lateral stiffness of the beams to be supported (where the stiffness of
each beam is taken as 48EI/L?).

The restraining system is typically in the form of truss-type bracing in the plane of the
compression flanges of the beams (i.e. plan bracing) - see Figure 3.8. The in-plane

trusses transfer the restraint forces back to the supports of the beams.
Different forms of restraint to multiple beams are considered in Section 3.7.

Determination of restraint forces in a bracing system for multiple beams is illustrated
in Worked Example 3.

3.6 Beams with discrete intermediate restraints
below top flange

There are a number of common structural arrangements in which beams are laterally
restrained below the level of the top (compression) flange. Two such arrangements
with discrete intermediate restraints are illustrated in Figure 3.9. In both cases, the
distance of the lateral restraint below the top flange (i.e. the exposed section height) is
labelled & . An assessment must be made of the maximum value of 4 _above which the

top flange is considered as not fully restrained.

No specific guidance on the cases illustrated in Figure 3.9 is given in BS EN 1993-1-1,
though the recommendations given below may be used in conjunction with the general
provisions of BS EN 1993-1-1.

Connections to a beam web through web cleats or fin plates aligned vertically, as
shown in Figure 3.9(a), provide effective lateral and torsional restraint. Provided the
exposed web height _is not excessive (h /t, <27 forfy =275N/mm?and h /t < 22 for
fy =355 N/mm?), full lateral restraint may be assumed at the connection points and

member slenderness may be based on the distance between the connected points.
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Figure 3.9

Beam with discrete
restraint below

top flange

a. Discrete lateral and torsional restraint below top flange

—_——

b. Discrete lateral restraint below top flange

Connections to a beam web through horizontal plates, as shown in Figure 3.9(b), may
offer lateral restraint, but are unlikely to offer significant torsional restraint. To be
effective, such restraint should be located as close as possible to the compression
flange of the beam and at least within 20% of the section height.

3.7 Braced pairs of beams

The lateral stability of two or more beams may be improved by connecting the beams
together at intervals along their length by a system of plan bracing as shown in

Figure 3.10(a) or, if the bracing is not triangulated in plan, with individual triangulated
braces of the form shown in Figure 3.10(b). To be effective, any system of restraints
that relies solely on the linking together of a series of potentially equally unstable
members must ensure that instability will involve actual deformation of the bracing
system. Thus merely connecting the pair of beams with a light cross-member pinned
at its ends will not result in any benefit as it does not affect the buckling mode of

the beams.

From Clause 5.3.3 of BS EN 1993-1-1 and with reference to Section 3.5, the following
guidance is offered.

For plan bracing (Figure 3.10(a)), full lateral restraint to the compression flanges is
achieved at the braced points, provided the bracing members are attached to the
flanges and are capable of resisting the equivalent stabilizing force g, (applied laterally
as a uniformly distributed load to the beam). Resistance to lateral torsional buckling of

the beams should be verified between the braced points.



Figure 3.10
Braced pairs
of beams

Plan bracing between Vertical and

compression flanges lateral support [ Bracing
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a. Plan bracing
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b. Torsional bracing
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Restraint below flange Buckled shape

c. Cross-beams

The individual restraint forces, expressed in Section 3.5 in terms of percentages of the

maximum compression flange forces, are also applicable to this scenario.

For torsional bracing (Figure 3.10(b), the effective length is not limited to the distance
between bracings because overall instability of the stiffened system, involving rotation
of the paired beams, can occur®%, In the absence of explicit guidance in Eurocode 3,

the method set out in Section 8 of PD 6695-2 2% may be applied.

For the case shown in Figure 3.10(c)), torsional restraint is provided by means of

the flexural stiffness of the cross-beams. Again, the method set out in Section 8 of

PD 6695-2 may be applied. However, this arrangement will typically be less stiff than
that shown in Figure 3.10(b) and will hence result in greater effective lengths and
reduced lateral torsional buckling resistance. To avoid lateral-distortional buckling, it
should also be checked that the depth of the unsupported web below the compression
flange does not exceed the limit given in Section 3.6.

3.8 Beams supporting cavity walls

A pair of adjacent beams, typically hot rolled | sections or channels, is frequently
employed to support both leaves of a cavity wall. Such beams are often interconnected
at intervals by either ‘separators’ or ‘diaphragms’.
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Figure 3.11
Separators and
diaphragms

Pipes
a. Separator
O
[
% |
t‘ !
Rolled I section or channel Channel bolted to
with end plates welded stiffeners

b. Diaphragms

Separators act to ensure a fixed spacing between adjacent beams. They can carry
transverse forces, but are not generally capable of transferring vertical forces between
the beams. For equally loaded beams, separators simply dictate that both beams will
buckle in the same direction, but there is no increase in load-carrying capacity beyond
the sum of the individual beams.

Diaphragms are intended to retain the shape of the combined cross-section at their
location and thus provide torsional restraint to the beams. Provided that they possess
sufficient strength and stiffness, diaphragms may also allow effective transfer of
vertical loading between the beams and their resistance may be determined as for a

braced pair of beams (see Section 3.7).

Typical examples of separators and diaphragms are shown in Figure 3.11.

3.9 Bracing by means of U-frames

Certain forms of construction, e.g. deep girder bridges, lead naturally to the type

of arrangement shown in Figure 3.12(a), where a pair of parallel beams is rigidly
interconnected at intervals along their length by cross-members at or just above

the level of their lower flanges. The restraining effect is then transferred to the

upper compression flanges, usually by means of vertical stiffeners. Stiffeners can

be placed on the inside or outside of the beam, or both. In this case, the vertical
stiffeners and cross-members form ‘discrete U-frames’. In the alternative arrangement
of Figure 3.12(b), the cross-members are replaced by a reinforced concrete slab,

and vertical stiffeners are generally not provided. In this ‘continuous U-frame’, the
restraining effect is transferred to the compression flange by virtue of the stiffness of

the beam web acting as a vertical cantilever.



Figure 3.12
U-frames

Compression
flange of beam

Vertical web h
stiffener V|h

OO

Discrete cross-member
(with plan bracing)

a. Discrete U-frame with vertical web stiffeners and cross-members

Compression
flange of beam

Structural connection
between web and deck

Concrete slab

b. Continuous U-frame with concrete slab and unstiffened web

Guidance for both cases is provided in BS EN 1993-2 3% and PD 6695-2 2%, Further
information is also given in Reference 34. The basis of the approach is to treat the
compression flange and part of the compressed portion of the web as a strut on an
elastic foundation, the stiffness of the ‘foundation’ being provided by the bending
stiffness of the U-frame comprising the beam webs (with or without stiffeners) and
the cross-member or concrete slab. Calculation of the U-frame stiffness is described
in Section 3.9.1, while determination of the non-dimensional slenderness for lateral
buckling of the compression flange is set out in Section 3.9.2.

3.9.1 U-frame stiffness

The stiffness of a discrete U-frame C,, such as that shown in Figure 3.12(a), assuming

rigid joints between its components, is presented in Table D.3 of BS EN 1993-2 as:
EI

v

Co=———7 (3.7)

Cw Wb,
[T
21,
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in which [ is the second moment of area of each of the vertical stiffeners, I is the
second moment of area of the cross-member, bq is the spacing of the main beams, &

is the distance between the centroid of the compression flange and the centroid of the
cross-member, and & is the distance between the centroid of the compression flange
and the top of the cross-member. Section properties for stiffeners should be calculated
in accordance with Figure 9.1 of BS EN 1993-1-5% on the basis of the stiffener width
plus a length of 30¢&7 of web. For multiple beams, the restraint to internal beams may

be determined by replacing 2/ by 3/ in the calculation of C, 1.

Allowance for joint flexibility would be required if the joints between the vertical
stiffeners and cross-member of the U-frame were classified as ‘semi-rigid’ according
to Clause 5.2.2 of BS EN 1993-1-8¥".. Guidance on joint stiffness, including generic
stiffness values for typical joint details, is provided in PD 6695-2 129,

For a continuous U-frame comprising a concrete slab and two unstiffened webs, the
stiffness of the system ¢ should be evaluated per unit length. The second moment

of area of the web per unit length may be calculated as I, = ¢ */12(1 —1?), where v is
Poisson’s ratio. The second moment of area I of the concrete deck slab per unit length
should be calculated on the basis of the ‘cracked’ concrete section, with the concrete
properties transformed into equivalent steel properties by means of the modular ratio,
as described in Appendix A of Reference 38.

3.9.2 Non-dimensional slenderness

The non-dimensional slenderness for lateral buckling of the compression flange,
treated as a compression member, is defined in Clause 6.3.4.2(4) of BS EN 1993-2 as:
/T Aeff-f;/

= (3.8)
N

crit

in which 4 . is the sum of the compression flange area and one third of the
compressed portion of the web (with effective areas being used in the case of Class 4
sections) and N . is the elastic buckling load of the same section with continuous
restraint, based on gross section properties.

If the stiffness of each discrete U-frame C, is greater than 4NE/1, where N, is T El/?
and [ is the U-frame spacing, then /TLT may be calculated on the basis of the length
between the U-frames, with N_ = w’EIl/P.

For flexible U-frames (C, < 4N,/l) between ‘rigid’ end supports (as defined
by Equation (6.13) of BS EN 1993-2), N__ is given in Clause 6.3.4.2(6) of
BS EN 1993-2 as:

= mN, (3.9)

in which N, = n’EIl/L?, where [ is the transverse second moment of area of the effective
flange and web, L is the distance between rigid end supports, and m = 2/x%*°> > 1.0.



Figure 3.13

Rafter with
intermediate tension
flange restraint

The value of y is given by cL*/EI with ¢ being the U-frame stiffness per unit length,
taken as C /I for discrete U-frames spaced at a distance /. Note that N_, should not
be taken as larger than that of the elastic critical force for flexural buckling between
discrete lateral restraints ®4.

‘Rigid’ end supports are likely to be achieved in the case of cross-bracing, but are
unlikely to be achieved simply with end U-frames 34, Guidance on the determination of
Ncrit

modified expression for m is presented.

between non-rigid end supports is given in Section 9 of PD 6695-212%, in which a

3.9.3 Member resistance

Lateral torsional buckling resistance of the compression flange may be determined on
the basis of the above non-dimensional member slenderness in conjunction with the
buckling curves presented in Clause 6.3.2.2 of BS EN 1993-1-1.

The forces in the U-frame arising as a result of providing restraint against lateral
buckling of the compression flange are defined in Clause 6.3.4.2 of BS EN 1993-2 and
discussed in Reference 34.

3.10 Beams with tension flange restraint

The stability of beams with intermediate restraints at or adjacent to the tension flange
was introduced in Section 2.7. This scenario typically arises in the outer columns and
hogging moment regions of rafters in single storey portal frames, in which intermediate
tension flange restraint is provided by the purlins and side rails. These elements are
generally assumed to offer full lateral (translational) restraint but no torsional restraint
to the tension flange of the member. Lateral restraint may be assumed to be sufficient,
provided Equation BB.2 of BS EN 1993-1-1 is satisfied - see Section 3.12.

Intermediate tension
flange restraints

Torsional restraint
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Figure 3.14

Beam with
continuous tension
flange restraint

There are two approaches that may be followed to verify the stability of the member

between torsional restraints (i.e. where there is restraint to both flanges):

= Determination of member buckling resistance Mb!Rd, suitable for elastic design -
see Section 3.10.1.

= Determination of a stable length, generally used for plastic design -
see Section 3.10.2.

For both methods, two checks are required. The first relates to the stability of the
beam in a flexural torsional mode between restraints to both flanges, while the second

assesses the beam stability between the intermediate tension flange restraints.

3.10.1 Member buckling resistance check

The lateral torsional buckling resistance Mb,Rd of a beam may be determined from
Equation (2.15), based on the beam slenderness /TLT defined by Equation (2.18). For
checking stability of the member between torsional restraints, MCr is calculated as

M, . from Equation (2.34) for uniform moment, Equation (2.35) for a linear moment
gradient or Equation (2.36) for a nonlinear moment gradient. The dimension a should
be taken as the distance between the restrained longitudinal axis (e.g. the centroid
of the purlins) and the shear centre of the member - see Figure 3.14. For checking
stability of the member between the intermediate tension flange restraints, M_ is

calculated from Equation (2.33), assuming restraint to both flanges.®

Load
Original axis Original axis
of web \ of web
| |
| |
I I
Tension flange ‘
- - I I/ a
Restraint - &
Restraint
a b.

3.10.2 Stable member length check

Alternatively, and for segments of members containing plastic hinges, member stability
may be verified on the basis of stable member lengths, as set out in Clause BB.3.1.2
and BB.3.1.1 of BS EN 1993-1-1. Under uniform bending, the maximum stable length of
a member between torsional restraints (but with intermediate tension flange restraints)
is given by Equation (2.37), which is Equation BB.6 of BS EN 1993-1-1. For linear

and nonlinear moment gradients, the stable length is given by Equations (2.38) and
(2.39) respectively, which correspond to Equations BB.7 and BB.8 of BS EN 1993-1-1.
Equation (2.40), which is Equation BB.5 of BS EN 1993-1-1, may be used to check the
stable length between the intermediate tension flange restraints themselves.



3.11 Beams supporting timber floors

A series of steel beams supporting a timber floor system is a common form of
construction, particularly in older buildings. A number of practical arrangements
exist, in which the steel beam may be located beneath the timber joists or may lie
partly or wholly within the floor depth. The degree of lateral restraint provided by the
timber joists to the steel beam depends largely on the interconnection between these
two components. The cases shown below are considered to be examples of good
practice where there is a positive connection between the steel beam and the timber
joists; in such cases, the steel beam may be assumed to be fully laterally restrained

by the timber joists.
The following recommendations are made.

Positive connection between the timber joists and the steel beam is the ideal means of

providing lateral restraint.

Reliance on friction alone is not generally recommended, particularly when dynamic
loading is present. Lateral restraint by friction is permitted for temporary structures in
BS 597519, in which coefficients of friction u between timber and steel are provided.
For permanent situations, including typical residential construction, a conservative

value of u of 0.1 is recommended.

The timber plates employed in Cases (a) and (b) and the timber runners featuring in
Case (d) should be bolted to the steel beam at not less than 1 m spacing.

Nails or screws should be used to provide a positive connection between the timber
floor joists and timber plates in Cases (a) and (b) and between the timber floor joists
and the timber runners (though the steel hangers) in Case (d).

Notching of the timber joists over the top flange of the steel beam (with a tight fit) or
use of timber ‘keys’ are effective in preventing lateral movement of the top flange - see
Case (c). Additional steel straps are recommended for heavy beams (say > 35 kg/m).

Edge beams require special consideration because notching on its own is not sufficient

to provide restraint. Steel straps are generally required in this case.

Restraint forces transferred to the timber joists are relatively small for modest sized
steel beams and may be resisted either by diaphragm action of the flooring, or by

packing or fixing the ends of the timber joists firmly against the masonry walls.

For larger steel beams supporting walls or other heavy loads, specific provision for
lateral restraint should be made using straps and bracing, or the beam treated as

discussed in Section 4.2.

Restraint forces should be transferred to some stiff point in the structure (e.g. masonry
walls) or may be carried by diaphragm action when floor boards are present and

positively connected to the timber joists.
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Figure 3.16
Decking spanning
perpendicular

to beam

3.12 Beams supporting steel decking
(or roof sheeting)

Profiled steel decking, either in the form of roof sheeting or as formwork to a composite
floor, spans between the beam top flanges and is fastened with screws or pins. In
composite construction this is a temporary condition developed prior to and during
concreting. Two cases are considered - the first, covered in Section 3.12.1, where the
decking spans perpendicular to the beam under consideration (see Figure 3.16), and
the second, covered in Section 3.12.2, where the decking spans parallel to the beam
under consideration (see Figure 3.17).

3.12.1 Decking spanning perpendicular to beam

In this configuration - see Figure 3.16 - the shear stiffness of the sheeting provides
resistance to lateral deflections of the beam. This will typically be sufficient to provide
effective continuous lateral restraint to the beam.

To verify the ability of the sheeting to provide full lateral restraint, the shear stiffness
S of the sheeting (per unit of beam length) should satisfy the following criterion, given
in BS EN 1993-1-1, (BB.2):

2 2
S > 7—?[& T+ GI, +025K°EI "—ZJ
h L

7 (3.10)

in which L is the length of the beam and # is the depth of the beam.

This criterion assumes that the sheeting is connected to the beam at every rib. If the
sheeting is connected to the beam at every second rib, the shear stiffness required
increases by a factor of five (Clause BB.2.1(1)B of BS EN 1993-1-1).

Note that the adequacy of connection for this purpose is not stated in BB.2.1. Shear
studs through-deck welded will provide adequate connection. Where other means of
fixing is used, it should be designed to resist restraint forces given by Section 2.8.

Shear in decking

Pin or screw Support
Decking h/ \ : i\ l,l 1 \\
kX tl
\? \ —* \ ?\
. Q
|9 ¢
— | K.
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Figure 3.17
Decking spanning
parallel to beam

The shear stiffness per unit length of trapezoidal sheeting may be calculated from
Clause 10.1.1(10) of BS EN 1993-1-3¥, using the following expression:

S :1000\/1_3(50+103/Z)hi (N) (3.11)

in which ¢ is the thickness of the sheeting in mm, b_is the overall length of sheeting
perpendicular to the beams (i.e. the depth of the diaphragm) in mm, s is the spacing of

the members supporting the sheeting and /4 is the depth of the sheeting in mm.
Use of Equations (3.10) and (3.11) is demonstrated in Worked Example 4.

For cases where the stiffness of the sheeting is less than that required to provide full
lateral restraint, the beam must be verified for resistance to lateral torsional buckling.
The non-dimensional slenderness of a beam attached to profiled steel decking may be
determined from Equation (3.12) 1“4,

- n, Afhy pé
7. =06 /PEtysz (3.12)

where n, is the number of supporting beams, 4 is the cross-sectional area of a single
beam, & is the depth of the profiled sheeting, p is the profile pitch, ¢ is the thickness
of the sheeting and ¢ is a factor taken as 5 for fasteners in every trough and 15 for

fasteners in alternate troughs.

All beams are fully laterally restrained in the composite stage (see Section 3.13.1).

3.12.2 Decking spanning parallel to beam

In this configuration - see Figure 3.17
- the sheeting offers little resistance to

lateral deflection of the beam.

/ \—u——/ \— The steel beam is not restrained by

the decking and its effective length

is determined from the distance
between the beam-to-beam or

beam-to-column connections.

At the composite stage, all beams
are fully restrained laterally
(see Section 3.13.1).

3.13 Beams supporting concrete slabs

A system of parallel beams supporting a concrete slab may act either compositely,
due to the presence of shear connectors (see Figure 3.18(a)), or non-compositely

(see Figure 3.18(b)). In this section, it is assumed that joints between precast units



Figure 3.18
Beams supporting
concrete slabs

Tamalgee M D T

a. Composite b. Non-composite

are grouted; the situation in which only the precast slabs are present (e.g. during
construction) is covered in Section 3.14.

3.13.1 Composite beams

In the case of composite beams, full restraint will be provided to the beam by
diaphragm action in the slab, transferred through the shear connectors. Composite
beams are therefore fully restrained under imposed load. During construction, restraint
may be provided by the steel decking and reference should be made to Section 3.12.

3.13.2 Non-composite beams

In the case of non-composite beams, with no positive restraint to the compression
flange, lateral buckling is resisted only by friction between the steel beam and the
concrete slab.

Beams may be designed to be fully laterally restrained provided that the frictional
resistance per unit length of beam is greater than the required stabilizing force

for one beam per unit length g, which may be obtained from Clause 5.3.3(2) of
BS EN 1993-1-1 or from Equation (2.41). With a partial factor of 1.5 applied to the
load, this leads to the following requirement:

e, +5q
wu >1.5q, =12N, 7
where
w, is the uniformly distributed design loading acting on the beam per unit length
u is the coefficient of friction between the steel beam and concrete slab
NEd = MEd/h
M, is the maximum moment in the beam and % is the overall beam depth
e, = L/500 (with no reduction for multiple beams since the stabilizing effect of
friction is concerned with each beam and associated concrete slab)
o is the in-plane deflection of the bracing system (i.e. the concrete slab) due

to g, plus any external loads
L is the length of the beam.
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Figure 3.19

Lack of longitudinal
shear transfer
between precast units

52

The in-plane deflection 5q may be assumed to be insignificant in this scenario, due to
the high in-plane stiffness of the concrete slab. Hence, for a uniformly distributed load,
the above requirement reduces to:

12N, 3wl
"7 500L 1000
For L/h < 30, the required coefficient of friction u is about 0.1. Available test data 424!
suggests that the average coefficient of friction between steel and concrete is greater
than 0.4, with a lower bound of about 0.2. For beams with painted top flanges, u may
be smaller, but should exceed 0.1. Beams supporting concrete slabs (with grouted
joints if precast units are employed) may therefore be designed as fully laterally
restrained. Where the above requirement is not satisfied, the approach of Section 3.14
may be adopted.

3.14 Beams supporting precast concrete slabs

In Section 3.13, forces transferred to the concrete slab, either via the shear studs or
by friction, due to lateral buckling of the steel beam are assumed to be resisted by
diaphragm action in the concrete. A system of precast concrete slabs will act similarly
once the joints between the units are grouted and/or a top screed is in place. However,
prior to grouting (e.g. during construction) or where reliance is not put on the grout
between the units, such resistance will be lost, due to the lack of longitudinal shear
transfer between the individual precast units (i.e. the units can translate longitudinally
relative to one another, as shown in Figure 3.19).

Lateral stability is therefore reliant on the restoring moment that develops as the beam
buckles. Two cases are considered: the first relates to internal beams with symmetrical
loading (see Figure 3.20(a) and Section 3.14.1) while the second considers edge
beams or beams with non-symmetrical loading (see Figure 3.20(b) and Section 3.14.2).
The precast concrete slabs are shown as supported on the top flange of the steel
beam, but the guidance given in Sections 3.14.1 and 3.14.2 applies equally to slabs
supported on shelf angles.

Support

Relative longitudinal
translation of slabs

Steel beam

PLAN
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Figure 3.20
Beams supporting a. Internal beam b. Edge beam

precast concrete slabs

3.14.1 Internal beams with symmetrical loading

Figure 3.21 shows an internal beam with symmetrical loading in the buckled
configuration. As the beam buckles, the points of action of the slabs on either side
of the beam shift, such that a restoring
”’i’—f'k moment is generated that opposes the
buckling deformation. For symmetrical
loading, the restoring moment per unit
length M, may be shown to be:

wb_ /2

_wb f
wb, /2 Res 7 5
where w is the load per unit area from the
’;"g“:i'&ﬂf slabs, b_is the spacing between parallel
uckling o . .
beam supporting Buckled shape beams and f'is the width of flange covered
precast units by each slab, as shown in Figure 3.21.

The following recommendations are made for internal beams with symmetrical loading:

= Good practice requires that /> 60 mm for adequate bearing and g > 20 mm for
tolerance purposes, where g is the spacing between the slabs (see Figure 3.21),
leading to a minimum flange width for this form of construction of about 140 mm.
= Assuming, with a partial factor of 1.5 on loads, that the required stabilizing moment
per unit length is 1.5¢ s = 3wb L/1000, where g, is given by equation (2.41), & is
the depth of the beam and L is the beam length. Equating this with the restoring
moment per unit length gives, for stability:
L <500173
or
L<10.0m forf=60 mm
Allowing for some dimensional deviations, the criterion becomes L < 8 m.

Therefore, in practice, medium span beams (up to 8 m span) may be assumed to be
fully laterally restrained by the precast units provided the minimum bearing length is
achieved. The greater the bearing length the greater the restoring moment.
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Figure 3.22

Edge beams
supporting precast
concrete slabs
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Primary beams that do not receive direct loading from the precast slabs are restrained

only at the beam to beam connections.

3.14.2 Edge beams or beams with non-symmetrical loading

For edge beams or beams with non-symmetrical loading, the restoring moment will be
reduced and may be absent. Hence lateral restraint may not be provided. Also, it may be
necessary to consider the effects of torsion on the design of edge beams (irrespective
of the requirements for lateral stability), in which case reference may be made to SCI

publication P385“44, The following recommendations are made for edge beams.

For edge beams, the slabs must cover more than half of the flange width for any
restoring moment to be generated. Equating the required stabilizing and restoring
moments per unit length, and making some allowance for dimensional deviations,
leads to the following requirement for stability:

L <133x
where

X is the distance to which the precast slab extends beyond the centreline of
the steel section, as shown in Figure 3.22(a), up to a maximum value of 5/2,

where b is the flange width of the section.

For the case where the slabs are supported by the entire width of the flange, as shown

in Figure 3.22(b), lateral restraint is provided and torsional effects may be ignored.

Internal beams may be subjected to non-symmetrical loading either as a result of
unequal precast slab widths on either side of the supporting beam or unequal loading
on the slabs. With reference to Figure 3.23, where the slab widths on either side of the
supporting beam are denoted b, and b, and the loading from these slabs per unit area

are denoted w, and w,, the following recommendation is made.




Beam under

Load per consideration

unit area, w,

| — Load per

unit area, w,

Support

Figure 3.23
Beams with non- PLAN
symmetrical loading

Equating the required stabilizing and restoring moments per unit length, and making
some allowance for dimensional deviations, leads to the following requirement

for stability: (Note: see Corrigendum on next page)

267(M)Zzz(f/g+0.5)—0.5j
L<

171

w,b,

Wlbl

1+
The effect of combined bending and torsion should also be considered !4,

3.15 Beams with continuous restraint below
top flange

Concrete slabs supported on the bottom flange of a beam (Figure 3.24(a)) or on shelf
angles (Figure 3.24(b)) provide continuous restraint along the beam length, but below
the level of the top flange.

No specific guidance on the cases illustrated in Figure 3.24 is given in
BS EN 1993-1-1, though the recommendations given below may be employed.

Figure 3.24 a. Concrete slab supported on b. Concrete slab supported

) i bottom flange of beam on shelf angles
Beam with restraint

below top flange
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P360 — Corrigendum
(Noted March 2012)

The published expression at the end of Section 3.14.2 is as follows:

267(W2b2 (f/g+0.5) - o.sj
w, by
L

w,b,
wy by

1+

This is incorrect because the RHS is dimensionless as a result of omitting the parameter ‘g’.
Also, the subscripts to b do not match Figure 3.23.

The expression should be:

267g(w2b52(f /g +0.5)—o.5j
Wby,

1+ W,

Wby

L<

And for clarity, add:

Where f and g are defined in Figure 3.21
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Figure 3.25

Lateral torsional
and lateral
distortional buckling
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a. Lateral torsional buckling b. Lateral distorsional buckling

The possible modes of failure are lateral torsional buckling, where the cross-section
remains undistorted (see Figure 3.25(a)), and lateral distortional buckling (see
Figure 3.25(b)), involving flexure of the beam web.

Lateral torsional buckling

For precast construction, prior to grouting, lateral stability is reliant on the restoring
moment that develops as the beam buckles. Susceptibility to lateral torsional
buckling (see Figure 3.25(a)) may be assessed in the same manner as described

in Section 3.14.

Edge beams do not receive significant lateral support from the adjacent precast slabs,
and grouting has only a small beneficial effect. The beams are subject to combined
bending and torsion*#, which often dominates the design.

Lateral distortional buckling

Once the joints between the precast units and the beam are grouted, buckling can only
occur in a lateral distortional buckling mode. The key parameter then is the height of
the web that is free to bend (as shown in Figure 3.25(b)).

In publication P342148! it was shown that an approximate value of slenderness that
recognises the restraint present and the distortional nature of the instability can be
derived. That value may be expressed in terms of the non-dimensional slenderness as:

Tir =0.0026,[f, (h/1,)°" (3.13)

in whichfy is in N/mm?,

To attain the full in-plane bending resistance, /TLT < 0.4 (for a rolled section), which
requires that:

hit, <27 forfy =275 N/mm? and h/t <22 forfy =355 N/mm?.

In the case of the situation shown in Figure 3.24(a), once the gaps between the ends
of the precast units and the web are grouted, 7 may be taken as the exposed web



Figue 3.26
Asymmetric Slimflor
Beam (ASB) with
precast slabs

height /_ (as marked in Figure 3.24(a)). In this scenario, all UKC sections when used as
internal beams and supporting slabs on their bottom flanges may be designed as fully
laterally restrained. For UKB sections such slabs would need to occupy between one
half to two thirds of the clear web depth depending upon the beam proportions in order
that the beam be designed as fully laterally restrained.

In a shelf angle floor beam (Figure 3.24(b)), lateral distortional buckling does not occur
once the units are grouted.

3.16 Asymmetric Slimflor Beams (ASBs)

Asymmetric Slimflor Beams (ASBs) support concrete or composite floor slabs on their
wider bottom flanges. Their lateral stability, particularly during construction, requires
verification. In the final condition, once the concrete has hardened, lateral torsional
buckling will be prevented, as will lateral distortional buckling, provided the beam is fully
encased. If the beam is only partially encased in its final condition, lateral distortional
buckling, which involves flexure of the exposed web, should also be checked. ASBs

with deep composite decking“® are considered in Section 3.16.1, while those used in
conjunction with precast concrete slabs!“® are addressed in Section 3.16.2. A number of
design situations, including full symmetrical and non-symmetrical loading arrangements
should be considered, as described in SCI publication P392 7],

3.16.1 ASBs with deep composite decking

During construction, although there is a positive connection between the composite
steel decking and the bottom flange of the ASB, through the decking fixings. The top
(compression flange remains unrestrained. The ASB must therefore be checked for
susceptibility to lateral torsional buckling and it is recommended that the restraint
given to the tension flange from the fixings is ignored. Lateral distortional buckling will
not be critical during construction due to insufficient lateral restraint and will not be
possible in the final condition since the ASB will be fully encased.

The lateral torsional buckling check may be conducted as described in Section 2.2
on the basis of the non-dimensional member slenderness determined through

—
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Equation (2.18). The elastic buckling moment M_, must however reflect the mono-

symmetry of the section. Formulae for the calculation of M are given in Reference 15.

Alternatively, and more simply, the non-dimensional member slenderness may be
determined by adapting ‘Method 3’ in clause 6.3.2.3 of SCI publication P362 12! based on
earlier advice in SCI publication P175 %, For a uniformly distributed load and assuming

partial restraint is provided by the end connections, the slenderness may be taken as:
Jir =075V,

where V, for ASB sections, may be determined from:

1

vV =
JA+0.05(2, / X)*)* —y

In which A = L/i, X'is the torsional index (which is approximately X' = 0.84/t_for ASB
sections and is given exactly in P363), % is the overall height of the ASB and y is the
monosymmetry index (given in P363 or conservatively may be taken as 0.6).

After construction, the ASB is fully restrained.

3.16.2 ASBs with precast concrete slabs

ASBs with precast concrete slabs should be verified for resistance to both lateral

torsional buckling and lateral distortional buckling during construction.

In the construction condition before the precast units are grouted, lateral torsional buckling
should be assessed in the same manner as described in Sections 3.14 and 3.15.

Once the units have been grouted, distortional buckling should be assessed, using the
slenderness given by (3.13), with 4 taken as the height above the units. In the final
condition, lateral distortional buckling is, in principle, possible if the ASB is not fully

encased but in most practical situations buckling does not occur.

3.17 Composite beams in negative (hogging) bending

The top flanges of steel beams in composite sections are laterally restrained by their
connection to the concrete slab, once the concrete has hardened, as discussed in
Section 3.13. However, zones of composite beams in negative bending (for which the
steel bottom flange is in compression) are susceptible to a form of instability that
involves bending of the web, known as lateral distortional buckling - see Figure 3.27.
In these zones, although the concrete slab provides continuous lateral and torsional
restraint to the top flange, the unbraced bottom flange may buckle if the web has
insufficient stiffness.

This problem arises at the support regions of continuous composite beams. In such cases
the moment within the negative moment (hogging) region will vary as shown in Figure 3.27.



Figure 3.27
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This case may be treated as a continuous inverted U-frame in a similar fashion to that
described in Section 3.8. EN 1994-1-1 offers two approaches that apply to Class 1,

2 and 3 sections - a simplified verification is set out in Clause 6.4.3 of EN 1994-1-1,
while a more rigorous treatment is presented in Clause 6.4.2. In both approaches, web
stiffeners must be present at the supports, but elsewhere the web should be unstiffened.

The simplified approach (Clause 6.4.3 of EN 1994-1-1) is based on identifying arrangements
in which the full moment resistance may be attained without any reduction for lateral
instability. Subject to a number of qualifying conditions, Table 6.1 of EN 1994-1-1 sets
out limiting beam heights for IPE and HE sections, for the use of this simplified

verification. Guidance for UKB and UKC sections is presented in Reference 38.

The more rigorous approach set out in Clause 6.4.2 in EN 1994-1-1 is based on the use
of the lateral torsional buckling curves given in Clause 6.3.2 of BS EN 1993-1-1. Relative
slenderness (the Eurocode 4 term for non-dimensional slenderness) is defined as:

= (3.14)

where M, is the characteristic resistance moment of the composite section
(see Section 6.2 of EN 1994-1-1), and M__is the elastic critical moment for lateral
torsional buckling based on a continuous inverted U-frame. Further guidance is

provided in Reference 38.
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Figure 4.1
Stabilizing loads

Stabilizing and destabilizing loads were introduced in Section 2.5 of this guide. In this
section, practical occurrences of stabilizing and destabilizing loads are considered and

design guidance is provided.

4,1 Stabilizing loads

Loads applied below the level of the shear centre of a beam that are also free to move
laterally as the beam deflects, are referred to as ‘stabilizing’ loads. Typical examples,
where the load is applied at the level of the bottom flange, are shown in Figure 4.1.

As the twisting associated with buckling starts, so the line of action of the load
becomes eccentric to the beam’s shear centre. This induces a stabilizing effect in

the form of a moment equal to F' x e where e is the eccentricity of the load F.

Although this case is not covered explicitly in BS EN 1993-1-1, stabilizing loads may
be allowed for either directly in the calculation of M_or more approximately through a

reduction in member slenderness.

Solutions for the elastic critical buckling moment M_ for particular cases may be
determined from Equation (2.14) and with reference to NCClI SNOO3®), where the load
level is accounted for through the z, parameter, which is the distance between the
point of load application and the shear centre of the beam. Note that z, is negative
for stabilizing loads, resulting in an increase in M_ and therefore a reduction in

slenderness. In practical cases of I section beams loaded at or below the bottom
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Figure 4.2
Beam supporting a
masonry wall

flange, a reduction in slenderness of up to 20% relative to a member loaded through its
shear centre can result. Note that for doubly symmetric sections, the shear centre and
the centroid coincide.

Although not strictly the reverse of the destabilizing case, a 10% reduction in
slenderness relative to the same member loaded through its shear centre (i.e. taking
D =0.9 in Equation (2.21)) is a reasonable estimate to allow for the stabilizing effect
of bottom flange loading.

Combined bending and torsion effects may need to be considered 4.
4,2 Beams supporting a masonry wall

Beams supporting a masonry wall either independently, or through a slab, as shown
in Figure 4.2, may be considered differently depending on the level of lateral
restraint provided.

Timber floor

For the case of no lateral restraint:

A conservative approach is to assume that the brickwork provides no lateral restraint
and acts as a destabilizing (top flange) load. The ends of the beams are likely to be
either restrained at the bottom flange only or built into a wall; suitable effective lengths
for both cases are given in Sections 3.1 and 3.3, respectively.

If the line of action of the load does not pass through the shear centre of the beam, the
problem is one of combined bending and torsion 44,



Figure 4.3

Beam supporting a
wheel of an electrical
overhead crane

For the case where restraint is offered by the slab:

The top flange is prevented from displacing sideways and rotating by the connection
to the slab and therefore the beam is laterally restrained, irrespective of the form of
loading and the load is not destabilizing.

4.3 Destabilizing loads; beams supporting a wheel
of an electrical overhead crane

In situations where a load acts at (or above) the level of the top flange of a beam and
can move sideways with the beam as it starts to buckle, the load is considered to be
destabilizing. This situation commonly arises in beams supporting the wheels of an
electrical overhead crane, as shown in Figure 4.3. Similar examples exist in temporary
works or where beams support other heavy machinery. Note that detailed design rules
for crane supporting structures are provided in BS EN 1993-6 1“8, In all cases, sideways
movement of the load with the beam induces a destabilizing effect because the load F
acts at an increasing eccentricity e to the shear centre. However, for wheels and rails
of finite width it may be assumed that the load acts at the edge of the wheel or rail

causing a reduction in e.

Destabilizing load

Buckled shape

The influence of the destabilizing load may be accounted for either in the determination

of M or through an increase in member slenderness.

The elastic critical buckling moment M_may be determined from Equation (2.14)
and with reference to NCCI SNOO3®, where the load level is accounted for through
the z, parameter, which is the distance between the point of load application and the
shear centre of the beam. Note that z, is positive for destabilizing loads, resulting in
a reduction in M_ and therefore an increase in slenderness relative to a beam loaded

through its shear centre.

63



LOADS

64

As a simple alternative, the destabilizing parameter D may be set equal to 1.2 in
Equation (2.21) for the determination of member slenderness, which corresponds
to a 20% increase in effective length. D may be determined more accurately from
Equation (2.25).

For loads acting above the level of the top flange, the destabilizing parameter D = 1.2
may be conservatively multiplied by the ratio 2zg/hf, where z, is the distance of the
point of application of the load above the beam’s shear centre and 4, is the distance
between the shear centres of the flanges of the beam (i.e. & — A for an I section,
where & is the overall section depth and ¢ is the flange thickness). Again, D may be

determined more accurately from Equation (2.25).

For a crane rail, the dimension e may be reduced on buckling as the wheel load acts
only at the point of contact. In such cases, the height of the rail above the beam may
be ignored (i.e. z,= h./2 in Equation (2.14)).
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This section covers the lateral stability of members in plastically designed frames, where
the demands on the bracing elements are more onerous than in equivalent elastically
designed frames. A review of the requirements for plastic design is presented, after
which the special features and design of portal frames are discussed. Further general
guidance on the plastic design of steel structures may be found in Reference 49.

5.1 Requirements for plastic design

The fundamental requirement for all members in a plastically designed frame is that
they possess sufficient rotation capacity to permit the formation of the plastic hinges
used as the basis for the determination of the load carrying capacity of the frame.

Since the premature occurrence of local, member or overall frame buckling will
prevent this requirement from being met or lead to significant second order effects,
it is necessary to consider each buckling phenomenon. Local buckling may be
disregarded by using only those sections which meet the geometrical limits of Class 1
(plastic) cross-sections set out in Table 5.2 of BS EN 1993-1-1. Further cross-section
requirements are given in Clause 5.6 of BS EN 1993-1-1. Overall frame buckling
involving the interaction of several members in the frame may be accounted for
through second order elastic-plastic analysis, or by amplifying the actions in a first
order analysis using the Merchant-Rankine method, as described for portal frames
in NCCI SNO33 5%, Member buckling is usually taken to refer only to the out-of-plane
buckling of a single member between its ends.

The basic problem for member buckling is therefore one of preventing premature
lateral torsional buckling of a beam or a beam-column - guidance is set out in

Clause 6.3.5 and Annex BB.3 of BS EN 1993-1-1. Clause 6.3.5.1(1)B states that lateral
torsional buckling may be prevented by (1) providing effective restraints at the plastic
hinge locations and (2) verifying the stable length of segments between such restraints

and other lateral restraints.

Firstly therefore, effective restraints are required at points where the plastic hinges
form. Where it is impractical to provide such restraint directly at the plastic hinge
location, it should be provided at a distance of no more than half of the member depth
away from the location (see Figure 5.1), measured along the member axis, as stated in
Clause 6.3.5.2(4)B of BS EN 1993-1-1.
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Figure 5.1
Restraint at plastic
hinge locations

Hinge position

—//—\
v Tl

™

Member must be braced
within these limits

In this context, effective restraint is defined as lateral restraint to both flanges
(Clause 6.3.5.2(2)B). This may be provided by a combination of lateral restraint at the
tension flange and torsional restraint (by means of ‘stays’) that together restrict lateral

movement of the compression flange.

Secondly, additional lateral restraints are required at a distance no further from the

plastic hinge restraints than a defined ‘stable length’. A simple formula for the stable
length L__
hinges is given in Clause 6.3.5.3(1)B of BS EN 1993-1-1 as:

between compression flange restraints in a segment containing plastic

Lstable = 35‘c"l.z for 0625 < l// < 1

Le = (60— 40y e, for 1<y <0.625

inwhichy =M, . /M, is the ratio of end moments in the segment.

Equation (5.1) applies to uniform beam segments with I sections having A/t < 40¢ and

linear moment gradients. The resulting stable length L between compression flange

stable

restraints is simple to evaluate, but does not allow for the effect of axial force and
cannot be modified to take advantage of tension flange restraint.

More sophisticated formulae are given in Clause BB.3 of BS EN 1993-1-1. For a beam-
column, the maximum stable length L between the plastic hinge and the adjacent
lateral restraints is defined in Clause BB.3.1.1 of BS EN 1993-1-1 (see Equation (2.40)
earlier). The equation defines the maximum distance between the plastic hinge and
adjacent restraints - these restraints may be (1) compression flange restraints,

(2) torsional restraints (i.e. both flanges effectively restrained) or (3) tension flange
restraints, in which case a further verification on the stable length LS (or Lk for uniform
moment) to the next torsional restraint must also be performed, as described in
Clause BB.3.1.2.

The stability of parts of the member outside this region (i.e. in segments not containing
plastic hinges) may, of course, be checked using elastic methods by means of the
interaction formulae set out in Clause 6.3.3 of this publication. The benefit of tension

flange restraint may be considered as described in Section 2.7.



The demands on lateral restraints in plastically desighed members are more onerous
than those in elastically designed frames due to the need to stabilise members
containing significant amounts of plasticity and undergoing large rotations. Design
rules for restraints to members with plastic hinges are set out in Clause 6.3.5.2 of
BS EN 1993-1-1, which requires:

= At each plastic hinge location, the lateral restraint must be capable of withstanding
a force equal to 2.5% of the maximum force in the compression flange N, of the
braced member at the plastic hinge location.

= For the design of the bracing system, in addition to the checks for restraint
forces due to member imperfections (see Clause 5.3.3 of BS EN 1993-1-1 and
Sections 2.8 and 3.5 of this publication), the bracing system should also be able to
resist, in combination with other loads, local forces O_ applied at the plastic hinge
locations of each braced member, where:

N,
0, =150, —= (5.2)
100
where «_ is a reduction factor, defined in Clause 5.3.3(1), based on the number of

members being restrained.

It is also recommended that the non-dimensional slenderness of each restraint should

not exceed 1.2 (so that it possesses adequate stiffness).

5.2 Portal frame rafters

Plastically designed portal frames represent a particular class of structure for which
lateral restraints must be provided, to ensure against premature member buckling
failure before developing the plastic hinge mechanism. The practicality of tying
adjacent frames together to form a 3-dimensional structure will normally ensure that
the column/rafter intersection is braced by so-called eaves members (or ties). Under
most loading conditions, the inner flanges of the rafters will be in compression along
much of their length.

Clause 6.3.5.2 of BS EN 1993-1-1 requires that all plastic hinges be laterally and
torsionally restrained (i.e. restraint to both flanges). It is customary to use pairs of
purlin ‘stays’ (fixed at approximately 45 °) from the purlins or rails to the inner flange to
provide such restraint - see Figure 5.2. The principal design problem is then to decide
on the necessary locations of these stays. Normally, the proportions of the haunch are
selected such that it remains elastic and hinges can potentially form in the column or
in the rafter at the tip of the haunch.

The positions of the purlins and side rails are generally adjusted to be at or close to
within /2 of the plastic hinge locations. Stays are attached at these points between
the internal flanges and these secondary members to provide effective lateral
restraint to both flanges of the beam. The adjacent purlins should be placed at no
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Figure 5.2
Restraint to

both flanges
(torsional restraint)

< <

O [©)

Purlin

Stay
[oJ[9]

more than L_ (Clause BB.3.1.1 of BS EN 1993-1-1) from the plastic hinge locations,
while the adjacent stays should be positioned at no more than L_(Clause BB.3.1.2
of BS EN 1993-1-1) from the plastic hinge locations (assuming benefit is taken

from the intermediate purlins providing tension flange restraint; i.e. Their spacing
does not exceed L ). The position of the stays is selected to coincide with a suitable
purlin or side rail along the member length. The treatment of haunches is covered in
Clause BB.3.2 of BS EN 1993-1-1.

Further design checks are then required on the elastic stability of the remaining part of
the rafter or column, based on the provisions of Clause 6.3.3 of BS EN 1993-1-1. This
may take account of tension flange restraint between the points of compression flange

restraint, as described in Section 2.7.
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Table 6.1

Buckling lengths L,

for columns in multi-
storey braced frames

The design of columns is largely covered by existing guidance [*>54 and, for this reason,
individual cases are not considered in detail in this Section. The principal concern is to

determine the buckling length of columns correctly.

6.1 Columns in multi-storey buildings

The buckling length L_ (commonly referred to as the effective length) of a compression
member is the length of an otherwise similar column with ‘pinned’ end conditions that
has the same elastic buckling load. Pinned end conditions are assumed to prevent

lateral deflection of one end relative to the other but to offer no resistance to rotation.

Guidance on buckling lengths for columns in braced and unbraced frames is given below.

6.1.1 Columns in braced frames

For columns in braced multi-storey frames, buckling lengths are normally taken as
equal to the column lengths (i.e. L = 1.0L). Lower values of buckling lengths are

possible, as given in Table 6.1, when rotational restraint exists at the column ends.

The rotational end restraint afforded to columns by beam-to-column connections
depends on the form of connection and whether the beams are designed compositely.
Figure 6.1 shows examples of configurations in braced multi-storey frames and the
appropriate buckling lengths of the columns. End plate connections are assumed to
offer partial restraint. Fin plate connections should not be assumed to provide any

rotational restraint.

Note that if the frame is sensitive to sway effects (i.e. « < 10), buckling lengths equal
to the column lengths (i.e. L = 1.0L) should be employed, and second order effects

should be allowed for either by second order analysis or by the amplified sway method.

RESTRAINT (IN THE PLANE UNDER CONSIDERATION) L,
BY OTHER PARTS OF THE STRUCTURE
The column is Effectively restrained against rotation at both ends 0.7L
effectively held in
pO(SthIOI’l at both Partially restrained against rotation at both ends 0.85L
ends
Restrained against rotation at one end 0.85L
Not restrained against rotation at either end 1.0L
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Figure 6.1
Buckling lengths
of columns in non-
sway multi-storey
braced frames

CiE ]

ST AT A

A A A1
a. Fin plate (shown in b. Full depth end c. Composite
figure) or flexible end plate connections connections

plate connections

Internal L =L L =0.85L L =0.7L
Columns < “ «
L L =085L L_=0.85L
Columns < “ «
Notes:

1. Based on minor axis buckling of the columns

2. Edge or corner columns have attachment to two or three beams respectively.

Worst case is assumed to be minor axis connection to one beam
&, Beams and columns of similar stiffness

6.1.2 Unbraced frames

In rigid jointed unbraced frames, lateral stability relies on the flexural stiffness of the
connected beams and columns. For frames with a, > 10, no account need be made
for second order effects and buckling lengths of the columns may be taken as equal
to their actual lengths (i.e. L = 1.0L). For frames with «_ < 10, second order effects
need to be accounted for. This may be done by second order analysis, the amplified
sway method or through the use of increased (sway mode) column buckling lengths. If
either the first or second of these approaches is adopted, the buckling lengths of the
columns may be taken as equal to the system length. If the ‘effective length method’
is employed, buckling lengths greater than their system length are required, as set out
in NCCI SNO0O8®? and Reference 15.



Table 6.2

Effective length
factors for in-plane
buckling in portal
frame building

6.2 Columns in single storey buildings

In single storey industrial-type buildings, side rails and purlins are usually attached to
the columns and beams such that the buckling lengths of the members are reduced for
buckling in the minor axis (z-z) direction. It is implicitly assumed that these secondary
members act as bracing points and that some longitudinal bracing is provided for overall
stability. When sufficient restraints are provided, the member will buckle about the major
axis (y-y) direction rather than about the minor axis. The in-plane buckling lengths of

a column (in the major axis direction) in a typical industrial building are presented in
Table 6.2 (taken from NCCI SNO31°¢)), where L refers to the column height.

CONNECTION TO BASE CONNECTION AT EAVES LEVEL ~ ETECTIVE LENGTH

FACTORL /L
Nominally pinned Fixed 1.5
Fixed Nominally pinned 1.5
Fixed Fixed 1.2

The cases shown in Table 6.2 assume that the in-plane stiffness of the frame provides
the overall stability of the building in the major axis direction. Where overall stability

is provided by in-plane roof and wall bracing, the effective length of the columns may
be reduced.

6.3 Built-up columns

The treatment of column buckling presented in Section 2.1 relates to the behaviour
and design of rolled sections as individual members according to the rules of
Clause 6.3.1 of BS EN 1993-1-1. Design rules for built-up members, consisting of
two or more identical main members interconnected at intervals along their length,
are presented in Clause 6.4 of BS EN 1993-1-1. The design approach is based on
the analysis of an equivalent continuous member with a smeared shear stiffness S,
and an initial geometric imperfection e;. The chord forces N, ;, are established on
the basis of the applied axial load N, (divided equally between the chord member)
plus the additional axial load from the bending moment M, induced as a result of
the imperfection - see Clause 6.4.1(6) of BS EN 1993-1-1. This bending moment
is calculated at the mid-height of the column as the applied axial load multiplied by
the initial geometric imperfection, amplified to allow for the lateral deflection of the
member. The moment amplification due to lateral deflections takes account of both the

bending and shear stiffness of the built-up column.

Figure 6.2 illustrates two practical arrangements - laced and battened compressions
members - which are covered in Clauses 6.4.2 and 6.4.3 of BS EN 1993-1-1,

respectively. For each type of construction, checks on the interconnections (laces or
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Built-up columns - laced
and battened members

battens) should be performed for the end sections taking account of the shear
force in the built-up member, as described in Clause 6.4.1(7). Further guidance

is given in Reference 6.

Closely spaced built-up members, such as those shown in Figure 6.3, where the
chords are either in direct contact with one another or are closely spaced and
connected through packing plates, may be designed as single integral members
provided that the spacing between the interconnections is within the limits set out
in Table 6.9 of BS EN 1993-1-1.
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This Appendix presents four short examples that illustrate some aspects relating to the

restraint of beams against buckling. The examples are:

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4

BEAM WITH END RESTRAINT

TO BOTTOM FLANGE ONLY
Introduction

Beam properties

Design value of bending moment

Case 1 — Load suspended from bottom flange
Case 2 — Load applied to top flange

NOTCHED BEAM
Introduction

Beam properties

Local stability check
Buckling resistance moment
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86
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88
88
88
88
89

3.1
3.2
3.3
3.4

41
4.3
4.4
4.5
4.6

RESTRAINT FORCES ACTING

ON A BRACING SYSTEM
Introduction

Imperfection for analysis of bracing system
Force in compression flange of beams
Equivalent stabilizing force

RESTRAINT FROM STEEL DECKING
Introduction

Sheeting profile properties

Beam properties

Required sheeting stiffness

Available sheeting stiffness
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92
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93
93
94
94
94
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Figure 1.1
End restraint detail

SCI P363

3-1-1/3.2.1and NA.2.4
BS EN 10025-2

1 Beam with end restraint to bottom flange only

1.1 Introduction

This example illustrates the calculation of the design buckling resistance moment
for a beam with end restraint to the bottom flange only, and considers the effect of
destabilizing load. The beam is subject to a central point load and is supported at
either end on masonry walls spaced 7 m apart. Two cases are considered:

Case 1: theload is suspended from the bottom flange of the beam.
Case 2: the load is applied at the level of the top flange of the beam.

Positive connection is made between the beam and the walls by bolting the bottom
flange of the beam to a plate fixed on the top of the wall, as illustrated below.

The beam is a 305 x 165 x 46 UKB, grade S275, and the design value of the applied load

F,, s 55 kN. (An allowance for the self-weight of the beam has been made in this value.)

\ 305 x 165 x 46 UKB

Masonry Wall

1.2 Beam properties

Required beam properties for 305 x 165 x 46 UKB:
h =306.6 mm

b =165.7 mm

w,, ~ =720cm’

I, =896 cm*

I, =0.195 dm®

I =22.2 cm*

£ =11.8 mm

Material properties

t, < 16 mm, therefore f =275 N/mm’
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Section 3.3

Section 2.2.1

NA.2.17

3-1-1/6.3.2.3

3-1-1/6.3.2.1

86

1.3 Design value of bending moment
My, =F,L/4=550x7/4=963 kNm

1.4 Case 1-Load suspended from bottom flange

For a beam with end restraints to the bottom flange only, under a normal

(i.e. non-destabilizing) load, the effective length is taken as kL = L + 2h:

kL =L+2h=7000+ (2 X 306.6) = 7610 mm
On the basis of this effective length, the elastic critical moment of the beam,

with C1 = 1.35 for a central point load, may be calculated from Equation (2.13)

in this publication:

M wVE (kL) GI

=1.35—" /210000896 x 10* x81000x 22.2x 10°*
7610

\/1+Tt2><210000><0.195><1012 106
7610% x81000x 22.2x10*

=121 kNm

Hence, the non-dimensional slenderness is:

T L :\/720><103 <275 o
M, 121x10
Wb =306.6/165.7 = 1.85

For the case of rolled and equivalent welded sections, for I sections with 4/b < 2, use
buckling curve ‘b’ (a = 0.34). For rolled sections, = 0.75 and 4,;,=0.4.

Hence

@ =0.5[1+0t; (Ay —0.4)+0.7577%]

=0.5[1+0.34(1.28 - 0.4) + 0.75x1.28°] = 1.26

LT

1 1

% - 7 - —
. @ +P; —0.757 1.26++126° —0.75x1.28° — 0.53

The design buckling resistance moment is therefore given by:

3
Mb,Rd _ ZLT p]yf 053X720X10 X275><1076 :106 kNm

14Yi 1.0




Section 3.3

Section 2.2.1

NA.2.17

3-1-1/6.3.2.3

3-1-1/6.3.2.1

Since this is greater than MEd (96.3 kNm), the beam has sufficient resistance to lateral
torsional buckling.

1.5 Case 2 - Load applied to top flange

For this design situation, the load is destabilizing and thus the effective length is
increased to kL = 1.2L + 2h:

kL = 1.2L + 2h = (1.2 X 7000) + (2 X 306.6) = 9010 mm

On the basis of this effective length, the elastic critical moment of the beam,
with C1 = 1.35 for a central point load, may be calculated from Equation (2.13)
in this publication:

n’El
M =c =~ [EI GI /1+—W
o 7 o e e R L

= 1.359(;0\/210000><896><104 x81000x22.2x10"

J” 7’ x210000%0.195x10"
90107 x81000%22.2x 10"
=97.8 KNm

Hence, the non-dimensional slenderness is:

m W :
i :\/ a :\/720x10 X275 _ | .

M, 97.8x10°

cr

As for Case 1, use buckling curve ‘b’ (o = 0.34), with #=0.75 and /TLT’O =0.4.
Hence
@, =051+a,,(/;—04)+0.7522]

=0.5[1+0.34(1.42-0.4) +0.75x1.42%] =1.43

1 1

& - == =04
H D+ —0.7572 1.43+1.432-0.75x1.42? Or46

The design buckling resistance moment is therefore given by:

Mo - KWy /s _ 0.46x720x10° x 275 y

= 10° =91.5 kNm
i Yan 1.0

Due to the destabilizing nature of the load, the design buckling resistance moment
has reduced from 106 kNm in Case 1 to 91.5 kNm. As this value is lower than M_

(96.3 kNm), the section is now inadequate and a larger section must be used.
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2 Notched beam

2.1 Introduction

Determine the design buckling resistance of a 5.0 m long unrestrained secondary beam
subjected to a uniformly distributed load at the level of the top flange and supported at
its ends by primary beams. The primary
beams are 457 x 191 x 82 UKBs and

iI the secondary beam is a 356 X 127 X 33

100
50 N I[
I3 5 UKB. All beams are grade S275.
7S The secondary beam is notched at its
PN top flange, as shown in Figure 2.1, to
accommodate the connection, following the
A

recommendations given in SCI Publication

356x127x33 UKB . -
':/F XX P358. Verify that the notched region meets
457x191x82 UKB ili iteri inei
Figure 2.1 X191x local stability criteria and determine its
Connection details buckling resistance moment.

2.2 Beam properties

SCI P363 Section properties for 356 x 127 x 33 UKB:

h =349.0 mm
b =125.4 mm
L =50m
t = 8.5 mm
t, = 6.0 mm

oy =543 cm?
I =280 cm?*
I, =0.0812 dm®
I =8.79 cm*

Material properties:

3-1-1/3.2.1 & NA.2.4,

t, < 16 mm, therefore f =275 N/mm?’
BS EN 10025-2 Y

The dimensions of the notch are:

d =50 mm

cl

c =100 mm

2.3 Local stability check
d =50mm < 4/2 =128 mm

cl

hit, =349/6 =58.2 > 55.1 (for S275), so verify:
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Section 3.4.1

Section 2.2.1

Section 3.4.2

3-1-1/NA.2.17

< 167000/~ 167000 x 349

< = =348 mm
(hit,y (55.1)°

Since ¢ = 100 mm < 348.4 mm, the notched beam is OK with regard to local stability in
the notched region.

24 Buckling resistance moment

The procedure to check for overall stability is to calculate the elastic critical moment
normally and then apply a reduction factor, r , to determine M__for the notched beam.

Overall stability can then be checked using this critical moment value.

The elastic critical moment for an unnotched beam (with C, = 1.13) is obtained from
Equation (2.13) of this publication:

M, JE[ GI, [l+—— B,

T kLYGL,

=1 13W\/210000X280X104 x81000x8.79x10* x

72 x210000x0.0812x10" +
1+ > —x10
9000° x81000x8.79%x10

=64.1 kNm
Calculate .
d./h =50/349=0.14<0.15

cl

h 2c_ 349 2(100)

Ll I =1.15
2(h—d,) h 2(349-50) 349

Therefore, a =

Hence,
EI ) ) 2
r -1 _a v 10— 1.15 \/210000x00812x140 068
CL\GI, 1.13x5000 81000x8.79x10

The reduced elastic critical moment allowing for the notch M__is given by:

M =7 M, =0.68x64.1=43.8 kNm

cr,n

The non-dimensional slenderness is:

3
i _ plyf \/543><10 ><§75:1.85
43.8x10
Wb =349.0/125.4=2.78

For the case of rolled and equivalent welded sections, for I sections with 2 < 4/b < 3.1,

use buckling curve ‘¢’ (a = 0.49). For rolled sections, f = 0.75 and Joro=0.4.

LT,0
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Hence,
31-1/6.32.3 @,  =05[1+0a.; (A —04)+0.7517%]
=0.5[1+0.49(1.85—-0.4)+0.75x1.85°]=2.13
1 1
Xur > =028

D +JD7 —0.757%  2.13++/2.132 ~0.75x1.85

The design buckling resistance moment is therefore given by:

W 3
311/6.321 M, = Zxlyyfy _ 0.28x543x10° x275 x107* = 42.1kNm

Vi 1.0
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Figure 3.1
Structural
arrangement

3-1-1/5.3.3(1)

3-1-1/5.3.3(1)

3 Restraint forces acting on a bracing system

3.1 Introduction

A portal-frame building, 9 m wide, 5 m high and 15 m long, is braced in one of the end

bays by means of cross-bracing, as shown in Figure 3.1. The bracing system provides
lateral restraint to six roof beams. The roof beams are all 356 x 171 x 51 UKB

sections and the bracing members are CHS 114 x 5.0 sections.

The design value of the total wind force acting on the gable ends of the building is

0.8 kN/mZ2. The maximum design moment in the beams coexisting with this wind load

is 260 kNm. Determine the forces acting on the bracing system.

Purlins
356 x 171 x 51 UKB
CHS 114 x 5.0

N

3.2 Imperfection for analysis of bracing system

In order to calculate the forces in the bracing, the imperfection in the members to
be restrained must first be determined. The equivalent geometric imperfection of
members to be restrained is given by ¢, =a, L/ 500.

For this example, there are six beams to be restrained (i.e. m = 6) and the reduction

factor on the imperfection for multiple beams is given by:

a, = \/O.S(Hlj = \/0.5(1+lj =0.764
m 6

The corresponding value of the imperfection is therefore:

e, =0, L/500=0.764 X 9000/500 = 13.7 mm
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3-1-1/5.3.3(3)

3-1-1/5.3.3(2)

3.3 Force in compression flange of beams

Clause 5.3.3(3) states that the force N in the compression flange of the beams to be
stabilized may be taken as M, /h, where M, is the maximum design bending moment
in the beam and h is the overall beam height. Assuming that all the beams are equally

loaded, the total force in all 6 compression flanges is:

3 Ny =mM,, | h=6x260/0.358 = 4360kN

3.4 Equivalent stabilizing force

The equivalent stabilizing force g, initially assuming that the deflection of the bracing
system 5q =0 can now be determined:

e, +0 13.7+0
q, = ZNE(,S% = gx4360(L2+)X10*3 =5.92 kN/m
This force is applied to the bracing system, together with other external loads in
the load combination, which in this example is the design wind force on the gables
(= 0.8 x 5/2 =2.0 kN/m). The total design force is thus 7.92 kN/m.

Using analysis software, it is found that the maximum deflection of the bracing system
due to this design force is 0.406 mm.

This value of 5q is used to determine a revised value of g, which now allows explicitly

for the flexibility of the bracing system:

(3.7+0406) , 12 = 6,07 kN/m

e,+0
4 :ZNE(,S;%:SM%O

The deflection of the bracing system due to this enhanced design force is
5q = 0.422 mm, which is sufficiently close to the original value of 0.406 mm to preclude

the need for further iteration.

The bracing system should therefore be designed for a total design force of
6.07 + 2.0 = 8.07 kN/m to both stabilize the beams and resist the external loading.

Note that the total force applied to the bracing system in order to stabilize the beams
is 6.07 X 9.0 = 56.4 kN, while the sum of the forces in the beam compression flanges
2N, is 4360 kN. The bracing system therefore provides a restraint force equivalent to
(54.6/4360) x 100 = 1.25% of ZN .



Figure 4.1
Structural
arrangement and
steel decking

3-1-1/3.2.6

4  Restraint from steel decking

4.1 Introduction

A composite floor system comprises trapezoidal steel decking and in-situ cast concrete.

The decking is 6 m long supported on 8 m long 254 X 102 x 22 UKB beams at 3 m

centres, as shown in Figure 4.1. The decking, which spans perpendicular to the beams

and is attached at every rib, has a profile depth of 100 mm and thickness of 1.0 mm.
Investigate whether, during the construction phase (prior to concrete hardening), the

steel decking offers sufficient lateral restraint to the beams such that the beams may

be considered as fully restrained against lateral torsional buckling.

t=1.0mm

4.2 Material properties
E = 210000 N/mm?
G = 81000 N/mm?

4.3 Sheeting profile properties

Overall length of sheeting perpendicular to the beams 5 = 6000 mm

Beam spacing s = 3000 mm
Decking thickness t = 1.0 mm
Decking profile height h, =60 mm
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SCI P363

3-1-1/BB.2.1(1)

BS EN 1993-1-3
10.1.1(10)

94

4.4 Beam properties

Section properties for the 254 X 102 x 22 UKB are:

h =254 mm
I =119 cm*
I, =4.15 cm*
I, =0.0182 dm®

4.5 Required sheeting stiffness

For fully effective lateral restraint to the steel beam, the required sheeting stiffness Sreq

is given by:
70 n’ , o’
Srch :h—z(E[WF'FG[T +0.25h EIZF
70 12 n’ 4
= (210000x0.0182x10"" x 2)+(81000><4.15><10 )+
254 8000

2
I

(0.25x254* x210000x119x10* x 2000° )J = 4960000 N per unit length

= 4960 kN per unit length

4.6 Available sheeting stiffness

The shear stiffness of trapezoidal sheeting is given by:

s = 1000\/73(50+10§/E)hi

= 1000x+/1.0° (50 +10x3/6000) x 3(6)?)0 x107 = 11600 kN per unit length

Since § > qud, the floor beams may be considered to be laterally restrained by the
sheeting during the construction phase and therefore the beam may be considered to
be laterally restrained.

d
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