Acoustic Detailing
For Multi-Storey Residential Buildings
The Steel Construction Institute develops and promotes the effective use of steel in construction. It is an independent, membership based organisation.

SCI’s research and development activities cover many aspects of steel construction including multi-storey construction, industrial buildings, bridges, civil engineering and offshore engineering. Forms of construction addressed include steel and composite frames, light steel framing systems and modular construction. Activities encompass guidance on structural design in carbon and stainless steels, dynamic performance, fire engineering, sustainable construction, architectural design, building physics (including design for acoustic and thermal performance), value engineering, and information technology.

Membership is open to all organisations and individuals that are concerned with the use of steel in construction. Members include designers, contractors, suppliers, steelwork contractors, academics and government departments in the United Kingdom, elsewhere in Europe and in countries around the world. The SCI’s income is derived from subscriptions from its members, revenue from research contracts and consultancy services, publication sales and course fees.

The benefits of corporate membership include access to an independent specialist advisory service, free issue of SCI publications as soon as they are produced and free access to Steelbiz, an online technical information system. A Membership Information Pack is available on request from the Membership Manager.

The Steel Construction Institute, Silwood Park, Ascot, Berkshire, SL5 7QN.
Telephone: +44 (0) 1344 623345
Fax: +44 (0) 1344 622944
Email: membership@steel-sci.com

For information on publications, telephone direct: +44 (0) 1344 872775
or Email: publications@steel-sci.com

For information on courses, telephone direct: +44 (0) 1344 872776
or Email: education@steel-sci.com

Visit www.steelbiz.org – the 24×7 online technical information system for steel design and construction

Cover photo shows the six-storey extension of the Strand Palace Hotel, Covent Garden, London, which created a series of apartments in both new-build and renovation. On-site acoustic tests confirmed the excellent acoustic performance of Slimdek with a battened floor. The project parties were; Artesian plc (client), Goddard Manton (architect), Cameron Taylor Bedford (design engineer) and Miletrain (contractor).
Acoustic Detailing
For Multi-Storey Residential Buildings

A G J Way MEng, CEng, MICE
G H Couchman MA, PhD, CEng, MICE

Published by:
The Steel Construction Institute
Silwood Park
Ascot
Berkshire SL5 7QN

Tel: 01344 623345
Fax: 01344 622944
FOREWORD

The 2003 edition of the Building Regulations Approved Document E sets minimum standards of acoustic performance for walls and floors between dwellings (separating walls and floors). The Regulations, which came into effect in July 2003, provide guidance on how the requirements can be met and how compliance must be demonstrated.

There are two methods of demonstrating compliance with the requirements; pre-completion on-site acoustic testing or by using Robust Details (RDs). The RDs have undergone a testing regime to prove that they more than satisfy the requirements of Part E. Information about the RDs is available from Robust Details Limited.

The first edition of RDs is limited in its coverage of steel framed construction details. Therefore, for steel framed residential buildings some pre-completion site testing will be required. This publication gives acoustic details for steel framed buildings with a range of floor and wall constructions. All the details provided are expected to satisfy the requirements of site testing. It has been produced to provide designers, developers and architects with confidence that their projects will pass the testing requirements, provided the details given are used.

Acoustic requirements for ‘non-residential’ buildings are not covered by Part E. Reference should be made to BS 8233, which includes maximum ambient noise targets for a range of buildings, including commercial premises. It also covers minimum noise level targets to ensure privacy in open plan offices etc.

This publication was prepared by Mr A G J Way and Dr G H Couchman of The Steel Construction Institute. Some of the details are taken from or based on information given in SCI Technical Information Sheets P320, P321 and P322, which were written by Dr M T Gorgolewski. The illustrations of Robust Details included in this publication are based on those given in the Robust Details Handbook.

Funding for the preparation of this publication was gratefully received from Corus Construction & Industrial.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>vi</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Acoustic performance requirements</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Acoustic details in this publication</td>
<td>3</td>
</tr>
<tr>
<td>2 COMPOSITE DECK FLOORS</td>
<td>5</td>
</tr>
<tr>
<td>2.1 External wall and floor junction details</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Internal wall and floor junction details</td>
<td>13</td>
</tr>
<tr>
<td>3 PRECAST CONCRETE FLOORS</td>
<td>19</td>
</tr>
<tr>
<td>3.1 External wall and floor junction details</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Internal wall and floor junction details</td>
<td>23</td>
</tr>
<tr>
<td>4 FLOOR AND CEILING TREATMENTS</td>
<td>25</td>
</tr>
<tr>
<td>4.1 Floor treatment details</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Ceiling treatment details</td>
<td>31</td>
</tr>
<tr>
<td>5 INTERGRATION AND SERVICE PENETRATIONS</td>
<td>34</td>
</tr>
<tr>
<td>5.1 Services through separating floors</td>
<td>34</td>
</tr>
<tr>
<td>5.2 Services in separating walls</td>
<td>35</td>
</tr>
<tr>
<td>5.3 Integration of columns in separating walls</td>
<td>37</td>
</tr>
<tr>
<td>6 REFERENCES</td>
<td>38</td>
</tr>
<tr>
<td>APPENDIX A CURRENT ROBUST DETAILS</td>
<td>39</td>
</tr>
<tr>
<td>A.1 RD status of separating floor and wall combinations</td>
<td>39</td>
</tr>
<tr>
<td>A.2 Robust Details for separating walls</td>
<td>40</td>
</tr>
<tr>
<td>A.3 Robust Details for separating floors</td>
<td>43</td>
</tr>
</tbody>
</table>
SUMMARY

This publication provides guidance on acoustic details for steel framed residential buildings. Special consideration of acoustic performance is required in order to satisfy Part E of the Building Regulations.

The acoustic details given in this publication are expected to satisfy the requirements of the Building Regulations as their performance has been assessed based on test results of similar details. Where appropriate, the details presented have been based on Robust Details (RDs) and amended as necessary to increase the scope provided by the RDs.

Details are given for the junction of external walls with separating floors and separating walls with separating floors. The floor constructions included are in-situ concrete slabs with shallow profiled metal deck supported on hot-rolled steel sections, in-situ concrete slabs with deep profiled metal deck supported on ASB (Asymmetric Beams) or RHS edge beams and precast concrete units supported on hot-rolled steel sections. The wall constructions included are light steel framing and masonry blockwork.

Floating floor treatments (with expected performance values), ceiling treatment options and details for services are also included.
1 INTRODUCTION

1.1 Acoustic performance requirements

1.1.1 Building Regulations
The Building Regulations[1] impose, in Part E of Schedule 1, certain general requirements in relation to the acoustic performance of walls and floors between dwellings (separating walls and floors). The Regulations define the classes of dwelling that are covered; school buildings are also covered. There are specific requirements in relation to testing of sound insulation and these were modified in the latest amendment (2004) of the Regulations; the amended Regulations permit the use of Robust Details (see below) as an alternative to testing.

1.1.2 Approved Document E
Guidance on meeting the requirements of the Regulations is given in Approved Document E (2003 Edition)[2], as amended in 2004. The Approved Document sets out minimum standards of acoustic performance and levels of sound insulation testing.

The full scope of Part E covers:

- Acoustic insulation of separating walls and floors between newly built dwellings, and dwellings formed by a material change of use.
- Acoustic insulation between hotel rooms, boarding house rooms, and other rooms used for residential purposes such as student halls of residence and key worker accommodation, formed by new-build or by a material change of use.
- Acoustic insulation between rooms within a dwelling formed by new-build or by a material change of use.
- Acoustic characteristics of common parts of apartment buildings.
- Acoustic characteristics of schools. Comprehensive guidance on requirements and ways of meeting them is covered by Building Bulletin 93[3].

Sound insulation testing, often referred to as pre-completion site testing (PCT), has been required since the 2003 Edition of Part E (which came into force in July 2003) for at least 1 in 10 of every type of separating wall and floor at all residential construction sites, to show that the minimum performance standards have been met. The requirement for testing applies to residential buildings of all kinds, both purpose built and those formed by a material change of use. Tests must be carried out when the building is largely complete, with doors, skirting boards, electrical sockets and switches in place, but unfurnished and without a carpet (except with certain concrete and composite floors). It was originally intended to enforce the requirement for testing from January 2004, however this date was delayed to July 2004.

Because of the onerous nature of site testing, an alternative of using certain predefined ‘Robust Details’ (RDs) has been permitted by the Regulations and Part E has therefore been amended to explain this alternative.
1.1.3 Robust Details

The Robust Details recognised by the Regulations and Approved Document E are a set of technical construction details that are published by Robust Details Limited. The details have been demonstrated by testing to meet the acoustic insulation performance requirements that are set out in Approved Document E. Use of Robust Details avoids the need for pre-completion testing.

To use a Part E Robust Detail in the construction process, builders must first obtain permission from Robust Details Limited and pay the requisite fee for each home. Provided that the robust details are built correctly, this will be accepted by all building control bodies in England and Wales as evidence that the homes are exempt from pre-completion testing. On completion of each separating floor and wall, the builder is required to complete a compliance certificate and pass it to their building control body. Without this certificate, the building control body will not approve the home.

The following is an extract from Approved Document E, Annex E (as amended in 2004)[2] and should be borne in mind when considering the use of RDs.

It should be noted that the compliance of work with a robust detail, in circumstances where the correct procedures have been followed to attract exemption from PCT, is not a “deemed to satisfy” condition. The underlying requirement remains to achieve compliance with Part E1. The guidance in Approved Document E is that compliance will usually be established by the measured performance of the structure. Therefore it would be open to anyone, e.g. a homeowner, who considered that a party structure does not comply with Part E1, to seek to establish that by the carrying out of tests. It would not be a defence for the builder to show that he had correctly carried out a design detail approved by Robust Details Ltd, if the structure’s measured performance is shown not to meet the performance standards in Approved Document E.

However, all the RDs have undergone a thorough development and testing procedure. The performance of each RD is based on the mean result of 30 tests with no more than 8 of the tests being on the same site and involving at least two builders. The RDs have been shown to have acoustic performance considerably in excess of the minimum standards of the Building Regulations, in order to allow for variations in workmanship and quality.

For the current list of RDs (taken from the *Robust Details Handbook*[4]) see Appendix A. Procedures have been established to allow extension of this set as new details are proven.

The requirements for achieving RD status are clearly quite onerous in a number of ways over-and-above the technical performance requirements. The need to carry out a number of in-situ tests on a number of buildings (at the right time during construction) has had several consequences:

- The scope covered by the current RDs is quite limited.
- There are various idiosyncrasies which reflect the scope of what was available for testing.
It can be concluded that the published set is far from being an exhaustive statement of what will satisfy the required performance. Some other details are covered in Section 3 of this publication. It must be remembered however that these non-RD details, whilst more than likely to work, will still need pre-completion testing to demonstrate compliance.

Table 1.1 Summary of Part E requirements for separating walls and floors

<table>
<thead>
<tr>
<th>Building type</th>
<th>Separating walls</th>
<th>Separating floors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose built dwellings</td>
<td>$D_{nT,w} + C_{tr}$</td>
<td>$D_{nT,w} + C_{tr}$</td>
</tr>
<tr>
<td>Dwelling formed by material change of use</td>
<td>≥ 45 dB</td>
<td>≥ 45 dB</td>
</tr>
<tr>
<td>Purpose built rooms for residential purposes</td>
<td>≥ 43 dB</td>
<td>≥ 43 dB</td>
</tr>
<tr>
<td>Rooms for residential purposes formed by material change of use</td>
<td>≥ 43 dB</td>
<td>≥ 43 dB</td>
</tr>
</tbody>
</table>

Note: Refer to Approved Document E for complete information regarding the number of tests required.

1.2 Acoustic details in this publication

The following sections of this publication show recommended acoustic details for use in steel framed residential buildings. Some of the details are taken from or based on material given in SCI Technical Information Sheets P320\(^5\), P321\(^6\) and P322\(^7\). This publication builds on the information and extends the scope of the details contained within those publications. In some cases the recommended acoustic details shown in Section 2 include minor improvements over the earlier details. Based on the acoustic test results of similar details, all the details given in this publication should satisfy the requirements in Approved Document E. Alternative proprietary details also exist for some forms of construction.

Quantified acoustic performance values that can be expected with a range of floor treatments are given in Section 4.1.

Some of the recommended acoustic details in Section 2.1 are Robust Details (as described above), provided that the limits in the Robust Details Handbook are observed. Where this is the case, the RD reference is given.

Details in Section 2.2 show separating walls combined with separating floors. Whilst similar walls used with other types of floors are covered by Robust Details, none of the combinations shown in Section 2.2 currently (see note below) are in the Robust Details Handbook. Post-completion testing of the wall would therefore be required in all cases.

Details in Section 3 show generic solutions for precast units on hot-rolled steel frames. In some cases, as noted on specific details, similar details exist which are Robust Details; reference to the appropriate RD is given.
Note

The RD references noted for the details given in this publication are correct at the time of printing. However, the portfolio of available RDs will be updated frequently. Check with the SCI, Corus or Robust Details Ltd for the latest information.

For further information on RDs and updates, contact:

The Steel Construction Institute
Silwood Park
Ascot
Berkshire
SL5 7QN
Tel: 01344 623345
Fax: 01344 622944

Corus Construction & Industrial
PO Box 1
Brigg Road
Scunthorpe
North Lincolnshire
DN16 1BP
Tel: 01724 405060
Fax: 01724 404224

Robust Details Limited
PO Box 7289
Milton Keynes
MK14 6ZQ
Tel: 0870 240 8209
Fax: 0870 240 8203
2 COMPOSITE DECK FLOORS

2.1 External wall and floor junction details

2.1.1 External cavity wall with light steel internal leaf and shallow deck composite floor (with downstand beam)

General notes

This detail is a Robust Detail (E-FS-1) when it is used in conjunction with an RD floating floor treatment (See Section 4.1). $A \geq 80$ mm, $B \geq 130$ mm, $C \geq 300$ mm, the concrete density is at least 2200 kg/m3 and the light steel frame inner leaf has insulation between the studs.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Decking may be trapezoidal or re-entrant in profile.

Decking may span in either direction.

Where decking profiles are at right angles to the walls, voids (above the beam) are filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Outer leaf may be masonry or precast panels.

Inner leaf must not be continuous between storeys.
2.1.2 External cavity wall with masonry internal leaf and shallow deck composite floor (with downstand beam)

General notes
This detail is a Robust Detail (E-FS-1) when it is used in conjunction with an RD floating floor treatment (See Section 4.1), \(A \geq 80 \text{ mm}, \ B \geq 130 \text{ mm}, \ C \geq 300 \text{ mm} \), the concrete density is at least 2200 kg/m\(^3\), the inner leaf concrete block is of density 1350 - 1600 kg/m\(^3\) or 1850 - 2300 kg/m\(^3\) and the inner leaf \(\geq 100 \text{ mm} \).

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials
Decking may be trapezoidal or re-entrant in profile.
Decking may span in either direction.
Where deck profiles are at right angles to the walls, voids (above the beam) are filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.
Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials
Outer leaf may be masonry or precast panels.
Inner leaf must not be continuous between storeys.
2.1.3 External render wall (no cavity) with light steel and shallow deck composite floor (with downstand beam)

General notes
Performance levels similar to those of an RD could be expected with $A \geq 80$ mm and $B \geq 130$ mm.
Dimension D depends on the ceiling treatment used, see Section 4.2.
See Section 4 for floor and ceiling treatment options.

Floor materials
Concrete density should be at least 2200 kg/m³.
Decking may be trapezoidal or re-entrant in profile.
Decking may span in either direction.
Where decking profiles are at right angles to the walls, voids (above the beam) are filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.
Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials
Inner leaf must not be continuous between storeys.
2.1.4 External render wall (no cavity) with masonry and shallow deck composite floor (with downstand beam)

<table>
<thead>
<tr>
<th>Rigid insulation</th>
<th>Gypsum-based board nominal 8 kg/m² or 13 mm plaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer based render cladding</td>
<td>5 mm (min.) foamed polyethylene resilient flanking strip</td>
</tr>
<tr>
<td>Mineral wool packing</td>
<td>Floating floor treatment See section 4.1 for options</td>
</tr>
<tr>
<td>Masonry cavity wall inner leaf (100 mm min., 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³)</td>
<td></td>
</tr>
<tr>
<td>Mineral wool inserts</td>
<td>1 layer of gypsum-based board nominal 8 kg/m³ See section 4.2 for support systems</td>
</tr>
<tr>
<td>Shallow decking</td>
<td>Acoustic sealant</td>
</tr>
<tr>
<td>Dense mineral wool and fire protection as required</td>
<td></td>
</tr>
<tr>
<td>Continuous ribbon of adhesive</td>
<td></td>
</tr>
</tbody>
</table>

5 mm (min.) foamed polyethylene resilient flanking strip

5 mm (min.) foamed polyethylene resilient flanking strip

General notes

Performance levels similar to those of an RD could be expected with $A \geq 80$ mm and $B \geq 130$ mm.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Concrete density should be at least 2200 kg/m³.

Decking may be trapezoidal or re-entrant in profile.

Decking may span in either direction.

Where deck profiles are at right angles to the walls, voids (above the beam) must be filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Concrete block density should be 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³.

Inner leaf must not be continuous between storeys.
2.1.5 External cavity wall with light steel internal leaf and deep deck composite floor (with RHS or ASB edge beam)

Rigid insulation in external cavity

Cavity (50 mm minimum)

Cavity barrier to floor/wall junction, with cavity tray over

Halfen or similar stainless steel brickwork support

Optional insulation between studs (Not optional for RD)

External brickwork tied to inner stud wall

2 layers of gypsum-based board nominal 8 kg/m² each layer

5 mm (min.) foamed polyethylene resilient flanking strip

Acoustic sealant

Floating floor treatment See section 4.1 for options

Deep decking

1 layer of gypsum-based board nominal 8 kg/m²

See section 4.2 for support systems

General notes

This detail is a Robust Detail (E-FS-1) when it is used with an ASB edge beam, in conjunction with an RD floating floor treatment (See Section 4.1), \(A \geq 80 \text{ mm} \), \(C \geq 300 \text{ mm} \), the concrete density is at least 2200 kg/m³ and the light steel frame inner leaf has insulation between the studs.

The edge beam may be an RHS with welded plate or an ASB. However, acoustic performance may be impaired if an RHS is used.

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Decking may span in either direction.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Outer leaf may be masonry or precast panels.

Inner leaf must not be continuous between storeys.
2.1.6 External render wall (no cavity) with light steel and deep deck composite floor (with RHS or ASB edge beam)

- Rigid insulation
- Polymer based render cladding
- Optional insulation between studs
- 2 layers of gypsum-based board nominal 8 kg/m² each
- 5 mm (min.) foamed polyethylene resilient flanking strip
- Acoustic sealant
- Floating floor treatment

General notes

Performance levels similar to those of an RD could be expected with $A \geq 80$ mm.

Edge beam may be an RHS with welded plate or an ASB. However, acoustic performance may be impaired if an RHS is used.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Concrete density should be at least 2200 kg/m³.

Decking may span in either direction.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Inner leaf must not be continuous between storeys.
2.1.7 External cavity wall with masonry inner leaf and deep deck composite floor (with ASB or RHS edge beam)

<table>
<thead>
<tr>
<th>Rigid insulation in external cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity (50 mm minimum)</td>
</tr>
<tr>
<td>Cavity barrier to floor/wall junction, with cavity tray over</td>
</tr>
<tr>
<td>Primary steel ASB or RHS beam</td>
</tr>
<tr>
<td>Masonry cavity wall inner leaf (100 mm min., 1350 - 1600 kg/m³ or 1850 - 2300 kg/m³)</td>
</tr>
</tbody>
</table>

- **Rigid insulation in external cavity**
- **Cavity (50 mm minimum)**
- **Cavity barrier to floor/wall junction, with cavity tray over**
- **Primary steel ASB or RHS beam**
- **Masonry cavity wall inner leaf (100 mm min., 1350 - 1600 kg/m³ or 1850 - 2300 kg/m³)**

General notes

This detail is a Robust Detail (E-FS-1) when it is used with an ASB edge beam, in conjunction with an RD floating floor treatment (See Section 4.1), \(A \geq 80 \text{ mm} \), \(C \geq 300 \text{ mm} \), the concrete density is at least 2200 kg/m³, the inner leaf concrete block is of density 1350 - 1600 kg/m³ or 1850 - 2300 kg/m³ and the inner leaf \(\geq 100 \text{ mm} \).

The edge beam may be an RHS with welded plate or an ASB. However, acoustic performance may be impaired if an RHS is used.

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Decking may span in either direction.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Outer leaf may be masonry or precast panels.

Inner leaf must not be continuous between storeys.
2.1.8 External render wall (no cavity) with masonry and deep deck composite floor (with ASB or RHS edge beam)

General notes
Performance levels similar to those of an RD could be expected with $A \geq 80$ mm.

Edge beam may be an RHS with welded plate or an ASB. However, acoustic performance may be impaired if an RHS is used.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials
Concrete density should be at least 2200 kg/m3.

Decking may span in either direction.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials
Concrete block density should be 1350 – 1600 kg/m3 or 1850 – 2300 kg/m3.

Inner leaf must not be continuous between storeys.
2.2 Internal wall and floor junction details

2.2.1 Internal light steel separating wall and shallow composite deck floor (with downstand beam)

General notes

Performance levels similar to those of an RD could be expected with \(A \geq 80 \, \text{mm} \), \(B \geq 130 \, \text{mm} \), \(E \geq 200 \, \text{mm} \) and \(F \geq 50 \, \text{mm} \).

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Concrete density should be at least 2200 kg/m³.

Decking may span in either direction.

Decking may be trapezoidal or re-entrant in profile.

Where decking profiles are at right angles to the walls, voids (above the beam) are filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.

Ceiling board should not be in direct contact with any steel beams or columns.

Floor treatment should not be continuous under separating wall.

Wall materials

Wall board should not be in direct contact with any steel beams or columns.
2.2.2 Internal cavity masonry separating wall and shallow composite deck floor (with downstand beam)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
</table>

- 5 mm (min.) foamed polyethylene resilient flanking strip
- Floating floor treatment See section 4.1 for options
- Shallow decking
- One layer of gypsum-based board nominal 8 kg/m²
 See section 4.2 for support systems
- Dense mineral wool
- Deflection head
- Acoustic sealant
- Dense mineral wool based fire-stopping, tightly fitting into profile of steel deck on both sides of wall
- Mineral wool packing
- Wall finish, 13 mm plaster or cement (min. 20 kg/m²) or gypsum-based board (nominal 8 kg/m²) on dabs
- Cavity masonry separating wall (1350 - 1600 kg/m³ or 1850 - 2300 kg/m³)

General notes

Performance levels similar to those of an RD could be expected with \(A \geq 80 \text{ mm} \), \(B \geq 130 \text{ mm} \), \(E \geq 100 \text{ mm} \) and \(F \geq 75 \text{ mm} \).

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Concrete density should be at least 2200 kg/m³.

Decking may span in either direction.

Decking may be trapezoidal or re-entrant in profile.

Where decking profiles are at a right angle to the walls, voids must be filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.

Ceiling board should not be in direct contact with any steel beams or columns.

Floor treatment should not be continuous under separating wall.

Wall materials

Concrete block density should be 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³.

Wall board should not be in direct contact with any steel beams or columns.
2.2.3 Internal light steel separating wall and shallow composite deck floor (no downstand beam)

General notes
Performance levels similar to those for an RD could be expected with $A \geq 80$ mm, $B \geq 130$ mm, $E \geq 200$ mm and $F \geq 50$ mm.

Proprietary alternative solutions that exist may be adopted.
Dimension D depends on the ceiling treatment used, see Section 4.2.
See Section 4 for floor and ceiling treatment options.

Floor materials
Concrete density should be at least 2200 kg/m3.
Decking may span in either direction.
Decking may be trapezoidal or re-entrant in profile.
Where decking profiles are at right angles to the walls, voids (above the wall) are filled with profiled mineral wool inserts and caulked with acoustic or flexible sealant.
Ceiling board should not be in direct contact with any steel beams or columns.
Floor treatment should not be continuous under separating wall.

Wall materials
Wall board should not be in direct contact with any steel beams or columns.
2.2.4 Internal light steel separating wall and deep deck composite floor (with ASB beam)

- 5 mm (min.) foamed polyethylene resilient flanking strip
- 2 layers of gypsum-based board nominal 22 kg/m² each (total)
- Unfaced mineral wool batts (33 - 60 kg/m³) or unfaced mineral wool quilt (10 kg/m³ min.)
- Floating floor treatment
- See section 4.1 for options
- Deep decking
- 1 layer of 15 mm gypsum-based board or other fire-stopping material between ASB and light steel channel
- 1 layer of gypsum-based board nominal 8 kg/m²
- See section 4.2 for support systems
- Deflection
- Head
- Acoustic sealant
- Light steel frame separating wall
- General notes
 Performance levels similar to those of an RD could be expected with $A \geq 80$ mm, $E \geq 200$ mm and $F \geq 50$ mm.
 Dimension D depends on the ceiling treatment used, see Section 4.2.
 See Section 4 for floor and ceiling treatment options.

Floor materials
Concrete density should be at least 2200 kg/m³.
Decking may span in either direction.
Floor treatment should not be continuous under separating wall.
Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials
Wall board should not be in direct contact with any steel beams or columns.
2.2.5 Internal cavity masonry separating wall and deep deck composite floor (with ASB beam)

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity masonry separating wall</td>
<td>1350 - 1600 kg/m³ or 1850 - 2300 kg/m³</td>
</tr>
<tr>
<td>Acoustic sealant</td>
<td></td>
</tr>
<tr>
<td>Deep decking</td>
<td></td>
</tr>
<tr>
<td>Deflection head (Mineral wool fire-stopping material between ASB and block work)</td>
<td></td>
</tr>
<tr>
<td>Floating floor treatment</td>
<td>See section 4.1 for options</td>
</tr>
<tr>
<td>5 mm (min.) foamed polyethylene resilient flanking strip</td>
<td></td>
</tr>
<tr>
<td>Wall finish, 13 mm plasterboard or cement (min. 20 kg/m²) or gypsum-based board (nominal 8 kg/m²) on dabs</td>
<td></td>
</tr>
<tr>
<td>1 layer of gypsum-based board nominal 8 kg/m²</td>
<td>See section 4.2 for support systems</td>
</tr>
<tr>
<td>5 mm (min.) foamed polyethylene resilient flanking strip</td>
<td></td>
</tr>
<tr>
<td>Acoustic sealant</td>
<td></td>
</tr>
<tr>
<td>Cavity masonry separating wall</td>
<td></td>
</tr>
</tbody>
</table>

General notes
Performance levels similar to those of an RD could be expected with $A \geq 80$ mm, $E \geq 100$ mm and $F \geq 75$ mm.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials
Concrete density should be at least 2200 kg/m³.
Decking may span in either direction.
Ceiling board should not be in direct contact with any steel beams or columns.
Floor treatment should not be continuous under separating wall.

Wall materials
Concrete block density should be 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³.
Wall board should not be in direct contact with any steel beams or columns.
2.2.6 Internal light steel separating wall and deep deck composite floor (with no beam)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mm (min.) foamed polyethylene resilient flanking strip</td>
<td>Acoustic sealant</td>
<td>Deep decking</td>
<td>2 layers of 15 mm gypsum-based board or other fire-stopping material</td>
</tr>
<tr>
<td>Two layers of gypsum-based board nominal 22 kg/m² (total)</td>
<td>Unfaced mineral wool batts (33 - 60 kg/m³) or unfaced mineral wool quilt (10 kg/m³ min.)</td>
<td>Floating floor treatment See section 4.1 for options</td>
<td>2 layers of 15 mm gypsum-based board</td>
</tr>
</tbody>
</table>

General notes
Performance levels similar to those of an RD could be expected with $A \geq 80$ mm, $E \geq 200$ mm and $F \geq 50$ mm.

Dimension D depends on the ceiling treatment used, see Section 4.2.
See Section 4 for floor and ceiling treatment options.

Floor materials
Concrete density should be at least 2200 kg/m³.
Decking may span in either direction.
Ceiling board should not be in direct contact with any steel beams or columns.
Floor treatment should not be continuous under separating wall.

Wall materials
Wall board should not be in direct contact with any steel beams or columns.
3 PRECAST CONCRETE FLOORS

3.1 External wall and floor junction details

3.1.1 External cavity wall with light steel internal leaf and precast floor (with downstand beam)

![Diagram of external cavity wall with light steel internal leaf and precast floor]

Rigid insulation in external cavity

Cavity (50 mm minimum)

Cavity barrier to floor/wall junction, with cavity tray over

Mineral wool packing

Light steel frame inner leaf

Optional insulation between studs

Deflection head

5 mm (min.) foamed polyethylene resilient flanking strip

Acoustic sealant

1 layer of gypsum-based board nominal 8 kg/m² each layer

2 layers of gypsum-based board nominal 8 kg/m² each layer

Floating floor treatment See section 4.1 for options

Screed (sand and cement or proprietary screed min. 80 kg/m²)

Precast unit

1 layer of gypsum-based board nominal 8 kg/m²

See section 4.2 for support systems

Dense mineral wool and fire protection as required

Acoustic sealant

General notes

Performance levels similar to those of an RD could be expected with $A \geq 40$ mm and $B \geq 150$ mm.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Precast unit mass should be at least 300 kg/m².

Screed mass should be at least 80 kg/m².

Outer leaf may be masonry or precast panels.

Precast units must butt tightly together and all voids between units must be grouted.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Voids between the wall and floor must be filled with acoustic or flexible sealant.

Inner leaf must not be continuous between storeys.
3.1.2 External cavity wall with masonry internal leaf and precast floor (with downstand beam)

- **Rigid insulation in external cavity**
- **Cavity (50 mm minimum)**
- **Cavity barrier to floor/wall junction, with cavity tray over**
- **Mineral wool packing**
- **Gypsum-based board nominal 8 kg/m² or 13 mm plaster**
- **5 mm (min.) foamed polyethylene resilient flanking strip**
- **Floating floor treatment See section 4.1 for options**
- **Precast unit**
- **Screed (sand and cement or proprietary screed min. 80 kg/m²)**
- **1 layer of gypsum-based board nominal 8 kg/m²**
- **See section 4.2 for support systems**
- **Continuous ribbon of adhesive**
- **Acoustic sealant**
- **Dense mineral wool and fire protection as required**
- **15 mm compressible resilient strip to provide deflection head**

General notes
Performance levels similar to those of an RD could be expected with $A \geq 40$ mm and $B \geq 150$ mm.
This detail is similar to Robust Detail E-FC-1.
Dimension D depends on the ceiling treatment used, see Section 4.2.
See Section 4 for floor and ceiling treatment options.

Floor materials
Precast unit mass should be at least 300 kg/m².
Screed mass should be at least 80 kg/m².
Precast units must butt tightly together and all voids between units must be grouted.
Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials
Concrete block density should be 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³.
Voids between the wall and floor must be filled with acoustic or flexible sealant.
Inner leaf must not be continuous between storeys.
Outer leaf may be masonry or precast panels.
3.1.3 **External render wall (no cavity) with light steel and precast floor (with downstand beam)**

<table>
<thead>
<tr>
<th>Rigid insulation</th>
<th>2 layers of gypsum-based board nominal 8 kg/m² each layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer based render cladding</td>
<td>5 mm (min.) foamed polyethylene resilient flanking strip</td>
</tr>
<tr>
<td>Mineral wool packing</td>
<td>Acoustic sealant</td>
</tr>
<tr>
<td>Light steel frame inner leaf</td>
<td>Precast unit</td>
</tr>
<tr>
<td>Optional insulation between studs</td>
<td>1 layer of gypsum-based board nominal 8 kg/m²</td>
</tr>
<tr>
<td></td>
<td>See section 4.2 for support systems</td>
</tr>
<tr>
<td></td>
<td>Screed (sand and cement or proprietary screed min. 80 kg/m²)</td>
</tr>
<tr>
<td></td>
<td>Dense mineral wool and fire protection as required</td>
</tr>
</tbody>
</table>

General notes

Performance levels similar to those of an RD could be expected with \(A \geq 40 \text{ mm} \) and \(B \geq 150 \text{ mm} \).

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Precast unit mass should be at least 300 kg/m².

Screed mass should be at least 80 kg/m².

Precast units must butt tightly together and all voids between units must be grouted.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Voids between the wall and floor must be filled with acoustic or flexible sealant.

Inner leaf must not be continuous between storeys.
3.1.4 External render wall (no cavity) with masonry and precast floor (with downstand beam)

<table>
<thead>
<tr>
<th>Rigid insulation</th>
<th>Gypsum-based board nominal 8 kg/m² or 13 mm plaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer based render cladding</td>
<td>5 mm [min.] foamed polyethylene resilient flanking strip</td>
</tr>
<tr>
<td>Mineral wool packing</td>
<td>Floating floor treatment See section 4.1 for options</td>
</tr>
<tr>
<td>Masonry cavity wall inner leaf (100 mm min., 1350 - 1600 kg/m³ or 1850 - 2300 kg/m³)</td>
<td>Screed (sand and cement or proprietary screed min. 80 kg/m³)</td>
</tr>
<tr>
<td></td>
<td>Precast unit 1 layer of gypsum-based board nominal 8 kg/m³ See section 4.2 for support systems</td>
</tr>
<tr>
<td></td>
<td>Dense mineral wool and fire protection as required</td>
</tr>
<tr>
<td></td>
<td>Acoustic sealant</td>
</tr>
<tr>
<td></td>
<td>Continuous ribbon of adhesive</td>
</tr>
<tr>
<td></td>
<td>15 mm compressible resilient strip to provide deflection head</td>
</tr>
</tbody>
</table>

General notes

Performance levels similar to those of an RD could be expected with \(A \geq 40 \) mm and \(B \geq 150 \) mm.

This detail is similar to Robust Detail E-FC-1.

Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials

Precast unit mass should be at least 300 kg/m².

Screed mass should be at least 80 kg/m².

Precast units must butt tightly together and all voids between units must be grouted.

Ceiling board should not be in direct contact with any steel beams or columns.

Wall materials

Concrete block density should be 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³.

Voids between the wall and floor must be filled with acoustic or flexible sealant.

Inner leaf must not be continuous between storeys.
3.2 Internal wall and floor junction details

3.2.1 Internal light steel separating wall and precast floor (with downstand beam)

<table>
<thead>
<tr>
<th>Deflection head</th>
<th>Mineral wool packing</th>
<th>2 layers gypsum-based board nominal 22 kg/m² (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic sealant</td>
<td></td>
<td>Unfaced mineral wool batts (33 - 60 kg/m³) or unfaced mineral wool quilt (10 kg/m³ min.)</td>
</tr>
<tr>
<td>5 mm (min.) foamed polyethylene resilient flanking strip</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Floating floor treatment
See section 4.1 for options

One layer of gypsum-based board nominal 8 kg/m²
See section 4.2 for support systems

Acoustic sealant

Precast unit

Screed (sand and cement or proprietary screed min. 80 kg/m²)

5 mm (min.) foamed polyethylene resilient flanking strip

General notes
Performance levels similar to those of an RD could be expected with \(A \geq 40 \text{ mm}, B \geq 150, E \geq 200 \text{ mm} \) and \(F \geq 50 \text{ mm} \).
Dimension \(D \) depends on the ceiling treatment used, see Section 4.2.
See Section 4 for floor and ceiling treatment options.

Floor materials
Precast unit mass should be at least 300 kg/m².
Screed mass should be at least 80 kg/m².
Precast units must butt tightly together and all voids between units must be grouted.
Ceiling board should not be in direct contact with any steel beams or columns.
Floor treatment should not be continuous under separating wall.

Wall materials
Voids between the wall and floor must be filled with acoustic or flexible sealant.
Wall board should not be in direct contact with any steel beams or columns.
3.2.2 Internal cavity masonry separating wall and precast floor (with downstand beam)

General notes
Performance levels similar to those of an RD could be expected with $A \geq 40$ mm, $B \geq 150$, $E \geq 100$ mm and $F \geq 75$ mm.

This detail is similar to Robust Detail E-FC-1.

Dimension D depends on the ceiling treatment used, see Section 4.2.

See Section 4 for floor and ceiling treatment options.

Floor materials
Precast unit mass should be at least 300 kg/m².
Screed mass should be at least 80 kg/m².
Precast units must butt tightly together and all voids between units must be grouted.
Ceiling board should not be in direct contact with any steel beams or columns.
Floor treatment should not be continuous under separating wall.

Wall materials
Concrete block density should be 1350 – 1600 kg/m³ or 1850 – 2300 kg/m³.
Voids between the wall and floor must be filled with acoustic or flexible sealant.
Wall board should not be in direct contact with any steel beams or columns.
4 FLOOR AND CEILING TREATMENTS

4.1 Floor treatment details

All floating floor treatments (FFTs) given below can be used with floor slabs constructed from in-situ concrete with deep or shallow profile metal decking or with floor slabs constructed from precast units and screed topping. However, manufacturer’s instructions should be consulted for all FFTs.

Typical performance values are quoted for each type of floor treatment when used in conjunction with an appropriate composite slab. The quoted performance values assume the presence of a gypsum-based board ceiling in addition to the floating floor treatment. See Section 4.2 for ceiling treatment options.

4.1.1 Deep batten floor

<table>
<thead>
<tr>
<th>18 mm (min) thick tongue and groove flooring board</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 mm min.</td>
</tr>
<tr>
<td>Floor slab (in-situ concrete slab on profiled steel decking or pre-cast units)</td>
</tr>
<tr>
<td>Proprietary battens with integral resilient foam strip</td>
</tr>
</tbody>
</table>

Notes

This floating floor treatment is a Robust Detail floor treatment (FFT 1) when used with 18 mm (minimum) tongue and groove flooring board and resilient composite battens at least 70 mm deep.

Total clearance ≥ 70 mm when loaded to 25 kg/m².

The timber batten is bonded to resilient foam strips at the top or at the bottom.

For additional performance, a 19 mm gypsum-based board may be included under the flooring board (optional).

Services installed in floor should not bridge the resilient layer.

Separate flanking strips should be used to isolate the walls from the floating floor system.

Floor treatment must be installed in accordance with the manufacturer’s instructions.

Expected Performance

Airborne: 54 dB $\leq D_{nTw} + C_T \leq 60$ dB

Impact: 35 dB $\leq L'_{nTw} \leq 45$ dB
4.1.2 Cradle and batten floor

![Diagram of cradle and batten floor setup]

Notes

This floating floor treatment is a Robust Detail floor treatment (FFT 2) when used with 18 mm (minimum) tongue and groove flooring board and a resilient cradle and batten system at least 60 mm deep.

Total clearance \(\geq 60 \text{ mm} \) when loaded to 25 kg/m².

The battens are supported by cradles and resilient pads.

For additional performance, a 19 mm gypsum-based board may be included under the flooring board (optional).

Services installed in floor should not bridge the resilient layer.

Separate flanking strips should be used to isolate the walls from the floating floor system.

Floor treatment must be installed in accordance with the manufacturer’s instructions.

Expected Performance

Airborne: \(54 \text{ dB} \leq D_{nTw} + C_w \leq 60 \text{ dB} \)

Impact: \(35 \text{ dB} \leq L'_{nTw} \leq 45 \text{ dB} \)
4.1.3 Standard batten floor

![Diagram of standard batten floor]

Notes

This floating floor treatment is a Robust Detail floor treatment (FFT 3) when used with 18 mm (minimum) tongue and groove flooring board and resilient composite standard battens at least 45 mm deep.

Total clearance ≥ 45 mm when loaded to 25 kg/m².

The timber batten is bonded to resilient foam strips at the top or at the bottom.

For additional performance, a 19 mm gypsum-based board may be included under the flooring board (optional).

Services installed in floor should not bridge the resilient layer.

Separate flanking strips should be used to isolate the walls from the floating floor system.

Floor treatment must be installed in accordance with the manufacturer’s instructions.

Expected Performance

Airborne: $54 \text{ dB} \leq D_{ntw} + C_{tr} \leq 60 \text{ dB}$

Impact: $35 \text{ dB} \leq L'_{ntw} \leq 45 \text{ dB}$
4.1.4 Platform floor

![Platform floor diagram]

Notes
This floating floor treatment is a Robust Detail floor treatment (FFT 4) when used with 18 mm (minimum) tongue and groove flooring board and mineral wool resilient layer at least 25 mm (minimum 150 kg/m³) or 30 mm (minimum 140 kg/m³).

Overall mass per unit area of floor system should be at least 16 kg/m².

For additional performance, a 19 mm gypsum-based board may be included under the flooring board (optional).

No services should be installed in the floor system.

Separate flanking strips should be used to isolate the walls from the floating floor system.

Floor treatment must be installed in accordance with the manufacturer’s instructions.

Expected Performance
Airborne: \(52 \text{ dB} \leq D_{nT_w} + C_w \leq 57 \text{ dB}\)
Impact: \(40 \text{ dB} \leq L'_{nT_w} \leq 45 \text{ dB}\)
4.1.5 Shallow platform floor

- 9 mm (min) thick tongue and groove flooring board
- Floor slab (In-situ concrete slab on profiled steel decking or precast units.)
- Pre-bonded resilient layer

Notes

This floating floor treatment is a Robust Detail floor treatment (FFT 5) when used with 9 mm (minimum) tongue and groove flooring board and resilient layer pre-bonded to the flooring board.

No services should be installed in the floor system.

The resilient layer should not simply be turned up at the edges of the floor to isolate the walls from the floor treatment, separate flanking strips should be used.

Floor treatment must be installed in accordance with the manufacturer’s instructions.

Expected Performance

Airborne: $50 \, \text{dB} \leq D_{nT_w} + C_w \leq 57 \, \text{dB}$

Impact: $40 \, \text{dB} \leq L'_{aT_w} \leq 50 \, \text{dB}$
4.1.6 Screed floor

Notes
Screeed is sand and cement mix or a proprietary lightweight screed.
The resilient layer should be dense mineral wool, plastic insulant, or a foam layer carefully installed to ensure continuity.
The resilient layer should not simply be turned up at the edges of the floor to isolate the walls from the screed, separate flanking strips should be used.
Care must be taken to avoid air gaps at edges of the screed.
No services should be installed in the floor system.
Floor treatment must be installed in accordance with the manufacturer’s instructions.

Expected Performance
Airborne: $50 \, \text{dB} \leq D_{nTw} + C_{tr} \leq 57 \, \text{dB}$
Impact: $40 \, \text{dB} \leq L'_{nTw} \leq 50 \, \text{dB}$
4.2 Ceiling treatment details

All separating floors should have a ceiling treatment of at least one layer of nominal 8 kg/m² of gypsum-based board. Ceiling treatments to precast unit separating floors may require 10 kg/m² of gypsum-based board depending on the size of the void between ceiling and precast unit (see details below for further guidance).

The sound insulation performance of a ceiling treatment can be increased by placing a mineral wool quilt in the ceiling void (performance improved typically by 3 - 4 dB for airborne and 4 - 5 dB for impact sound) or by using two layers of gypsum-based board (performance improved typically by 2 - 4 dB for airborne and 3 - 5 dB for impact sound).

4.2.1 Board and metal frame

<table>
<thead>
<tr>
<th>Floor slab (In-situ concrete slab on profiled steel decking or pre-cast units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>1 layer of gypsum-based board (nominal 8 kg/m² or 10 kg/m²)</td>
</tr>
<tr>
<td>Proprietary metal frame system</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>

Notes

Proprietary metal frame systems can be used to hang the ceiling below downstand beams to form a flat soffit.

For in-situ concrete slabs supported by profiled steel decking:
- Ceiling board must be at least 8 kg/m² of gypsum-based board
- $C \geq 300$ mm for use with RD (E-FS-1).

For all floor constructions:
- $D \geq 100$ mm with ceiling board of 8 kg/m²
- $D \geq 75$ mm with ceiling board of 10 kg/m².

All ceiling joints must be sealed with tape or caulked with sealant.

Ceiling treatment must be installed in accordance with the manufacturer’s instructions.
4.2.2 Board and timber battens

<table>
<thead>
<tr>
<th>Floor slab (In-situ concrete slab on profiled steel decking or pre-cast units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 layer of gypsum-based board (nominal 8 kg/m²)</td>
</tr>
<tr>
<td>Timber battens and counter battens</td>
</tr>
</tbody>
</table>

Notes

Timber battens fixed to the underside of the slab support the ceiling board close to the slab.

For in-situ concrete slabs supported by profiled steel decking:
- Ceiling board must be at least 8 kg/m² of gypsum-based board
- $C \geq 300$ mm for use with RD (E-FS-1)
- $D \geq 100$ mm with ceiling board of 8 kg/m².

For precast unit with screed floors:
- Ceiling board must be at least 8 kg/m² of gypsum-based board
- $D \geq 100$ mm for use with RD (E-FC-1)

All ceiling joints must be sealed with tape or caulked with sealant.

Ceiling treatment must be installed in accordance with the manufacturer’s instructions.
4.2.3 Board and resilient bars

Notes
Proprietary resilient bars decouple the ceiling from the floor slab and enhance acoustic insulation of the floor.

For in-situ concrete slabs supported by profiled steel decking:
- Ceiling board must be at least 8 kg/m² of gypsum-based board
- C must be ≥ 300 mm for use with RD (E-FS-1)
- Resilient bars may be fixed directly to the underside of the deck.

For precast unit and screed floors:
- Ceiling board must be at least 10 kg/m² of gypsum-based board
- D must be ≥ 65 mm for use with RD (E-FC-1)
- This form of ceiling treatment is only suitable if precast units are ≥ 200 mm deep and ≥ 300 kg/m².

All ceiling joints must be sealed with tape or caulked with sealant.

Ceiling treatment must be installed in accordance with the manufacturer’s instructions.

4.2.4 Down lighters and recessed lighting

Down lighters or recessed lighting may be installed in the ceiling with no significant loss of acoustic performance provided that:
- There is a minimum ceiling void of 75 mm.
- Lighting is installed in accordance with the manufacturer’s instructions.
- There is no more than one light per 2 m² of ceiling area in each room.
- The centres between lights are not less than 0.75 m.
- The openings do not exceeding 100 mm diameter or 100×100 mm.

Particular attention should be paid to Building Regulations Part B – Fire Safety[^8].
5 INTERGRATION AND SERVICE PENETRATIONS

5.1 Services through separating floors

Services that penetrate separating floors must be detailed appropriately to ensure that the acoustic performance of the separating floor is not impaired. The usual solution is to box in the service with two layers of gypsum-based board. It is not necessary for the service penetration to be adjacent to a wall.

A typical service penetration detail is given.

5.1.1 Pipes through separating floor

| Two layers of gypsum-based board nominal 8 kg/m² each |
| 25 mm (min.) of mineral wool quilt (10 kg/m³ min.) |
| 6 mm (min.) foamed polyethylene resilient flanking strip |
| Floor slab (in-situ concrete slab on profiled metal decking or pre-cast units) |
| One layer of gypsum-based board nominal 8 kg/m² |

Notes

This detail is recommended in the Robust Details Handbook[4].

The floor slab may be in-situ concrete supported by profiled metal decking or precast concrete units with a screed.

See Section 4 for floor and ceiling treatment options.

The frame used for boxing in may be timber or light steel.
5.2 Services in separating walls

Services within separating walls must be detailed appropriately to ensure that the acoustic performance of the separating wall is not impaired. The usual solutions are to stagger services on either side of the wall and provide additional layers of gypsum-based board where the wall board is penetrated.

Typical details for services in light steel framed separating wall are given.

<table>
<thead>
<tr>
<th>5.2.1 Electrical sockets and switches (staggered method)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes

This detail is recommended in the *Robust Details Handbook*[^1].

Sockets, switches etc must be staggered on each side of the wall.

This method is not preferred when there are several switches or sockets to be located in close proximity.

Wall details must be in accordance with requirements given in Section 2.2.

[^1]: *Robust Details Handbook*
5.2.2 Electrical sockets and switches (service void method)

Notes
This detail is recommended in the *Robust Details Handbook* [4].
The service void method (shown) is the preferred method when there are several switches or sockets to be located in close proximity e.g. in a kitchen. Wall details must be in accordance with requirements given in Section 2.2.

5.2.3 Piped services

Notes
This detail is recommended in the *Robust Details Handbook* [4]. Services must be staggered on each side of the wall. Wall details must be in accordance with requirements given in Section 2.2.

This detail is not applicable for soil and vent pipes or gas pipes.
5.3 **Integration of columns in separating walls**

Steel columns within separating walls must be detailed appropriately to ensure that the acoustic performance of the separating wall is not impaired.

Typical details for columns located in a light steel framed separating wall are given.

5.3.1 Columns in separating walls

<table>
<thead>
<tr>
<th>Cavity filled with mineral wool</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mm thick dense mineral wool board</td>
</tr>
<tr>
<td>2 layers of gypsum-based board nominal 22 kg/m² (total) not fixed to primary steel frame</td>
</tr>
<tr>
<td>Light steel frame studs isolated from steel primary frame and not fixed to primary steel frame</td>
</tr>
</tbody>
</table>

Notes

Wall board is decoupled from the column with 30 mm of dense mineral wool board.

Proprietary alternative solutions that exist may be adopted.

Wall details must be in accordance with requirements given in Section 2.2.
6 REFERENCES

1 The Building Regulations 2000 (SI 2000/2531)
 As amended by:
 The Building (Amendment) Regulations 2001 (SI 2001/3335),
 The Building (Amendment) Regulations 2002 (SI 2002/440)
 The Building (Amendment)(No. 2) Regulations 2002 (SI 2002/2871)
 The Building (Amendment) Regulations 2003 (SI 2003/2692)
 The Building (Amendment) Regulations 2004 (SI 2004/1465)
 The Stationery Office
 (For latest revisions, check Building Regulations on ODPM website: www.odpm.gov.uk and www.tso.co.uk)

 Resistance to the passage of sound
 Approved Document E – Amendments 2004
 The Stationery Office

3 Building Bulletin 93
 Acoustic design of schools
 The Stationery Office, 2003

4 Robust Details Handbook
 Robust Details Ltd, 2004

5 GORGOLEWSKI, M.T. and COUCHMAN, G.H.
 Acoustic performance of light steel framed systems - Meeting the new
 requirements of Part E of the Building Regulations (2003) (P320)
 The Steel Construction Institute, 2003

6 GORGOLEWSKI, M.T. and LAWSON, R.M.
 Acoustic performance of Slimdek – Meeting the new requirements of Part E
 The Steel Construction Institute, 2003

7 GORGOLEWSKI, M.T. and LAWSON, R.M.
 Acoustic performance of composite floors - meeting the new requirements
 The Steel Construction Institute, 2003

8 Building Regulations 2000 – Approved Document B
 Fire Safety
 The Stationery Office, 2000
APPENDIX A CURRENT ROBUST DETAILS

The following information is taken from the first edition (June 2004) of the Robust Details Handbook [4].

A.1 RD status of separating floor and wall combinations

<table>
<thead>
<tr>
<th>Masonry walls</th>
<th>Concrete floors</th>
<th>Timber floors</th>
<th>Steel concrete composite floors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-FC-1</td>
<td>E-FC-2</td>
<td>E-FT-1</td>
</tr>
<tr>
<td>E-WM-1</td>
<td>⋄</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>E-WM-2</td>
<td>⋄</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>E-WM-3</td>
<td>⋄</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>E-WM-4</td>
<td>⋄</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>E-WM-5</td>
<td>⋄</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>E-WM-6</td>
<td>F</td>
<td>W+F</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timber walls</th>
<th>Concrete floors</th>
<th>Timber floors</th>
<th>Steel concrete composite floors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-FC-1</td>
<td>E-FC-2</td>
<td>E-FT-1</td>
</tr>
<tr>
<td>E-WT-1</td>
<td>U</td>
<td>W</td>
<td>⋄</td>
</tr>
<tr>
<td>E-WT-2</td>
<td>U</td>
<td>W</td>
<td>⋄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steel walls</th>
<th>Concrete floors</th>
<th>Timber floors</th>
<th>Steel concrete composite floors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-FC-1</td>
<td>E-FC-2</td>
<td>E-FT-1</td>
</tr>
<tr>
<td>E-WS-1</td>
<td>U</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>E-WS-2</td>
<td>U</td>
<td>⋄</td>
<td>X</td>
</tr>
</tbody>
</table>

Key:

- ⋄ Permissible RD wall and floor combination – no pre-completion testing required
- W Only the separating wall requires pre-completion testing
- F Only the separating floor requires pre-completion testing
- W+F Both the separating wall and floor require pre-completion testing
- U This is an uncommon form of construction, see ref. [4] for further guidance
- X Unacceptable combinations, see ref. [4] for further guidance
A.2 Robust Details for separating walls

A.2.1 Masonry separating walls

E-WM-1: Dense aggregate blocks (wet plaster)	1	External (flanking) wall junction
E-WM-1: Dense aggregate blocks (wet plaster)	2	Staggered external (flanking) wall junction
E-WM-1: Dense aggregate blocks (wet plaster)	3	Internal floor junction: timber floor supported on joist hangers
E-WM-1: Dense aggregate blocks (wet plaster)	4	Internal floor junction: timber floor joist built in, beam and block or precast concrete
E-WM-1: Dense aggregate blocks (wet plaster)	5	Separating floor junction
E-WM-1: Dense aggregate blocks (wet plaster)	6	Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab
E-WM-1: Dense aggregate blocks (wet plaster)	7	Roof junction: pitched roof without room in roof
E-WM-1: Dense aggregate blocks (wet plaster)	8	Roof junction: pitched roof with room in roof

E-WM-2: Lightweight aggregate blocks (wet plaster)	1	External (flanking) wall junction
E-WM-2: Lightweight aggregate blocks (wet plaster)	2	Staggered external (flanking) wall junction
E-WM-2: Lightweight aggregate blocks (wet plaster)	3	Internal floor junction: timber floor supported on joist hangers
E-WM-2: Lightweight aggregate blocks (wet plaster)	4	Internal floor junction: timber floor joist built in, beam and block or precast concrete
E-WM-2: Lightweight aggregate blocks (wet plaster)	5	Separating floor junction
E-WM-2: Lightweight aggregate blocks (wet plaster)	6	Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab
E-WM-2: Lightweight aggregate blocks (wet plaster)	7	Roof junction: pitched roof without room in roof
E-WM-2: Lightweight aggregate blocks (wet plaster)	8	Roof junction: pitched roof with room in roof

<p>| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 1 | External (flanking) wall junction |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 2 | Staggered external (flanking) wall junction |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 3 | Internal floor junction: timber floor supported on joist hangers |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 4 | Internal floor junction: timber floor joist built in, beam and block or precast concrete |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 5 | Separating floor junction |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 6 | Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 7 | Roof junction: pitched roof without room in roof |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 8 | Roof junction: pitched roof with room in roof |
| E-WM-3: Dense aggregate blocks (render and gypsum-based board on dabs) | 9 | Flue blocks built into separating wall |</p>
<table>
<thead>
<tr>
<th></th>
<th>E-WM-4: Lightweight aggregate blocks (render and gypsum-based board on dabs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External (flanking) wall junction</td>
</tr>
<tr>
<td>2</td>
<td>Staggered external (flanking) wall junction</td>
</tr>
<tr>
<td>3</td>
<td>Internal floor junction: timber floor supported on joist hangers</td>
</tr>
<tr>
<td>4</td>
<td>Internal floor junction: timber floor joist built in, beam and block or precast concrete</td>
</tr>
<tr>
<td>5</td>
<td>Separating floor junction</td>
</tr>
<tr>
<td>6</td>
<td>Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab</td>
</tr>
<tr>
<td>7</td>
<td>Roof junction: pitched roof without room in roof</td>
</tr>
<tr>
<td>8</td>
<td>Roof junction: pitched roof with room in roof</td>
</tr>
<tr>
<td>9</td>
<td>Flue blocks built into separating wall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-WM-5: Besblock “Star Performer” dense aggregate cellular blocks (render and gypsum-based board on dabs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External (flanking) wall junction</td>
</tr>
<tr>
<td>2</td>
<td>Staggered external (flanking) wall junction</td>
</tr>
<tr>
<td>3</td>
<td>Internal floor junction: timber floor supported on joist hangers</td>
</tr>
<tr>
<td>4</td>
<td>Internal floor junction: timber floor joist built in, beam and block or precast concrete</td>
</tr>
<tr>
<td>5</td>
<td>Separating floor junction</td>
</tr>
<tr>
<td>6</td>
<td>Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab</td>
</tr>
<tr>
<td>7</td>
<td>Roof junction: pitched roof without room in roof</td>
</tr>
<tr>
<td>8</td>
<td>Roof junction: pitched roof with room in roof</td>
</tr>
<tr>
<td>9</td>
<td>Flue blocks built into separating wall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E-WM-6: Aircrete blocks (render and gypsum-based board on dabs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External (flanking) wall junction</td>
</tr>
<tr>
<td>2</td>
<td>Staggered external (flanking) wall junction</td>
</tr>
<tr>
<td>3</td>
<td>Internal floor junction: timber floor supported on joist hangers</td>
</tr>
<tr>
<td>4</td>
<td>Internal floor junction: timber floor joist built in, beam and block or precast concrete</td>
</tr>
<tr>
<td>5</td>
<td>Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab</td>
</tr>
<tr>
<td>6</td>
<td>Roof junction: pitched roof without room in roof</td>
</tr>
<tr>
<td>7</td>
<td>Roof junction: pitched roof with room in roof</td>
</tr>
</tbody>
</table>
A.2.2 Timber separating walls

<table>
<thead>
<tr>
<th>E-WT-1: Twin timber frames (without sheathing board)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 External (flanking) wall junction</td>
<td>2</td>
<td>Staggered external (flanking) wall junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Internal floor junction</td>
<td>4</td>
<td>Separating floor junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Internal wall junction</td>
<td>6</td>
<td>Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Raft foundation</td>
<td>8</td>
<td>Roof junction: pitched roof without room in roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Services and sockets in the separating wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-WT-2: Twin timber frames (with sheathing board)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 External (flanking) wall junction</td>
<td>2</td>
<td>Staggered external (flanking) wall junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Internal floor junction</td>
<td>4</td>
<td>Separating floor junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Internal wall junction</td>
<td>6</td>
<td>Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Raft foundation</td>
<td>8</td>
<td>Roof junction: pitched roof without room in roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Services and sockets in the separating wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.2.3 Steel separating walls

<table>
<thead>
<tr>
<th>E-WS-1: Twin metal frames</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 External (flanking) wall junction</td>
<td>2</td>
<td>Staggered external (flanking) wall junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Internal floor junction</td>
<td>4</td>
<td>Internal wall junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Ground floor junction: timber floor, beam and block, precast concrete plank, cast in-situ concrete slab or ground bearing slab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Raft foundation</td>
<td>7</td>
<td>Roof junction: pitched roof without room in roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Services and sockets in the separating wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-WS-2: British Gypsum GypWall QUIET IWL</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 External (flanking) wall junction – steel or timber frame inner leaf (at concrete column position)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 External (flanking) wall junction – masonry inner leaf (at concrete column position)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 External (flanking) wall junction – steel or timber frame inner leaf (not at concrete column position)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Separating wall to separating wall junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Separating floor junction – in-situ concrete floor E-FC-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Internal wall junction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Sockets in the separating wall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.3 Robust Details for separating floors

A.3.1 Concrete separating floors

E-FC-1: Precast concrete plank	1	External (flanking) wall junction
	2	Separating wall junction
	3	Ceiling treatments for E-FC-2
	4	Floating floor treatments for E-FC-2
	5	Services – Service pipes through separating floor

E-FC-2: In-situ concrete slab	1	External (flanking) wall junction – steel or timber frame inner leaf
	2	External (flanking) wall junction – masonry inner leaf
	3	Separating wall junction
	4	Ceiling treatments for E-FC-1
	5	Floating floor treatments for E-FC-1
	6	Services – Service pipes through separating floor

A.3.2 Timber separating floors

E-FT-1: Timber I-joists	1	External (flanking) wall junction
	2	Separating wall junction
	3	Internal wall junction (non load bearing)
	4	Internal wall junction (load bearing)
	5	Ceiling treatments for E-FT-1
	6	Floating floor treatments for E-FT-1
	7	Services – Service pipes through separating floor

A.3.3 Steel separating floors

E-FS-1: In-situ concrete slab supported by profile metal deck	1	External (flanking) wall junction – steel or timber frame inner leaf
	2	External (flanking) wall junction – masonry inner leaf
	3	Ceiling treatments for E-FS-1
	4	Floating floor treatments for E-FS-1
	5	Services – Service pipes through separating floor