

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet	2 of	23
	Title	Example: Single span roof using battened se			for a low pitch
	Eurocode Ref	EN 1993-1-1, EN 1993-1-8 & EN 199			
Eurocodes made easy	Made by	Jonas Gozzi		Date	August 2005
	Checked by	Bernt Johansson		Date	August 2005
Partial safety factors					
• $\gamma_{\rm G} = 1,35 \text{ or } 1,0$	(per	manent loads)			EN 1990
• $\gamma_{\rm Q} = 1,5$	(imp	oosed loads)			
• $\gamma_{M0} = 1,0$					EN 1993-1-1
• $\gamma_{M1} = 1,0$					
• $\gamma_{M2} = 1,25$					
Loads					
Permanent loads					
Roof and insulat	ion	$0,35 \text{ kN/m}^2$			
Purlins		0,05 kN/m ²			
Truss self weigh	t	$0,12 \text{ kN/m}^2$			
g = (0, 35 + 0, 05)	$+0,12)\cdot7,2=$	= 3,74 kN/m			
Snow load					
The imposed load from side detailed description of ho					
$q_{\rm s} = 4,45 \ {\rm kN/m}$					
				[m]	
	Ļ Ļ .	\downarrow \downarrow \downarrow \downarrow \downarrow	•	q_{s}	
A		ΛΛΛ		ť	
	$/ \vee \vee \vee \vee$		$\overline{\mathbb{N}}$	\square	
				7,3	
X	30,0			X	

CALCULATION SHEET	Document Ref:	SX017a-EN-EU Sheet 4 of 23					
CALCOLATION SHEET	Title	Example: Single span truss and post frame for a low pitch roof using battened section chords					
	Eurocode Ref	EN 1993-1-1, EN 1993-1-8 & EN 1990					
Eurocodes made easy	Made by	Jonas Gozzi		Date	e August 20		t 2005
	Checked by	Bernt Johansson		Date		Augus	t 2005

The member forces are calculated under the assumption of pinned joints. This simplification is allowed when the compression chord is in cross section class 1. The calculations are performed by means of a computer, meaning that only the member forces will be shown here.

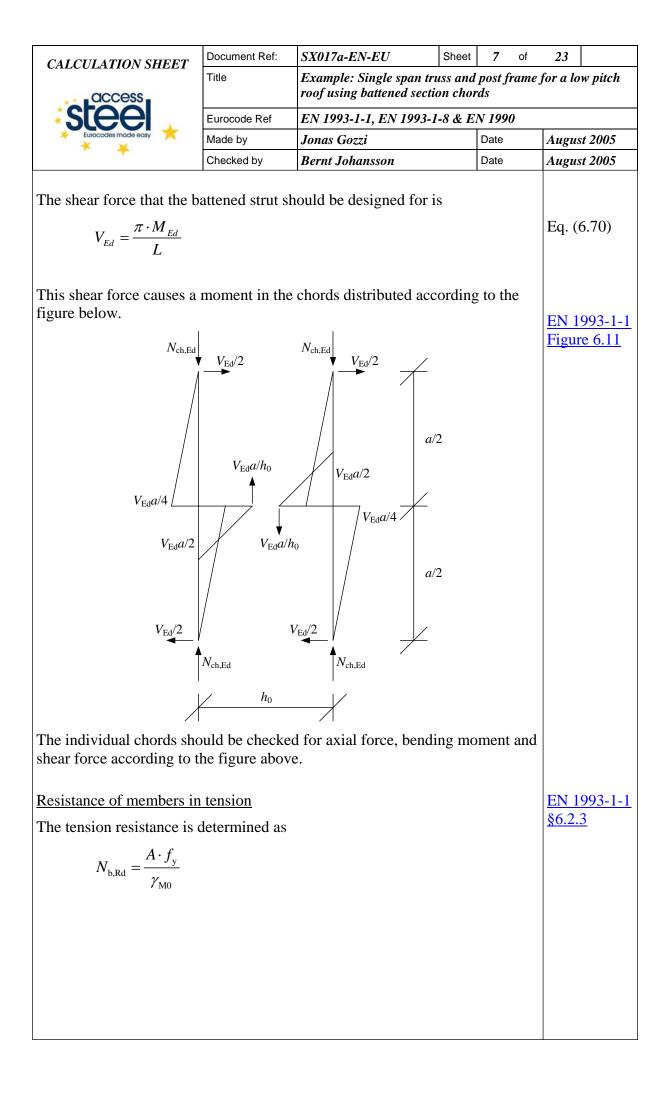
Two different load cases were considered;

- Dead Load (DL) + Snow Load (SL) and
- Dead Load (*DL*) + Wind Load (*WL*).

DL + SL

$$\gamma_{\rm G} \cdot g + \gamma_{\rm Q} \cdot q_s = 1,35 \cdot g + 1,5 \cdot q_s$$

DL + WL


$$\gamma_{\rm G} \cdot g + \gamma_{\rm Q} \cdot q_{\scriptscriptstyle W} = 1, 0 \cdot g + 1, 5 \cdot q_{\scriptscriptstyle W}$$

All member forces under these design loads are shown in the table below. Forces are in kN and negative sign means compression.

Member	DL+SL	DL+WL	Member	DL+SL	DL+WL
1-2	-139	52	1-12	214,	-77
2-3	-344	126	12-2	-189	68
3-4	-487	179	2-13	183	-66
4-5	-588	213	13-3	-164	59
5-6	-653	238	3-14	119	-41
6-7	-695	252	14-4	-108	37
7-8	-715	260	4-15	106	-36
8-9	-721	262	15-5	-96	33
9-10	-711	260	5-16	56	-19
10-11	-693	253	16-6	-52	17
12-13	233	-84	6-17	51	-17
13-14	418	-151	17-7	-47	16
14-15	530	-189	7-18	9,0	-2,3
15-16	622	-221	18-8	-8,4	2,1
16-17	668	-237	8-19	8,3	-2,1
17-18	708	-250	19-9	-7,8	2,0
18-19	714	-252	9-20	-29	11
19-20	720	-253	20-10	28	-11
20-21	701	-246	10-21	-28	11
21-22	684	-239	21-11	26	-10

	Document Ref:	SX017a-EN-EU	Sheet 5 of	23
	Title	Example: Single span to roof using battened sect		e for a low pitch
steel	Eurocode Ref	EN 1993-1-1, EN 1993-	-1-8 & EN 1990	
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005
	Checked by	Bernt Johansson	Date	August 2005
<u>Member design</u> Channel sections will be each consist of two profil	les and are des	igned as uniform built		
when out of plane deform <u>Buckling resistance of m</u> $N_{b,Rd} = \frac{\chi \cdot A \cdot f_y}{\gamma_{Ml}}$	ember in comp			<u>EN 1993-1-1</u> <u>§6.3.1</u>
$\gamma_{\rm M1}$				
The reduction factor, χ , i	s calculated as			
$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - 1}}$	$\overline{\overline{\overline{\lambda}^2}} \leq 1,0$			
where				
$\Phi = 0,5 \left[1 + \alpha \left(\frac{\lambda}{\lambda}\right)\right]$	$\overline{l} - 0, 2 + \overline{\lambda}^2$			
and				
$\overline{\lambda} = \sqrt{\frac{A \cdot f_{y}}{N_{cr}}}$				
α is an imperfection factor	or correspondi	ng to the appropriate b	ouckling curve.	
The buckling length, L_{cr} , buckling of the chords and in plane buckling, a buck used for the web member the upper chord should be case.	r <u>EN 1993-1-1</u> Annex BB			

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet 6 of	f 23
	Title	Example: Single span tr roof using battened sect		ne for a low pitch
steel	Eurocode Ref	EN 1993-1-1, EN 1993-		
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005
	Checked by	Bernt Johansson	Date	August 2005
Resistance of uniform bu	uilt-up member	rs in compression		EN 1993-1-1
Out of plane buckling for	r a built-up me	ember		<u>§6.4</u>
$N_{\rm cr} = \frac{\pi^2 \cdot EI_{\rm eff}}{L_{\rm cr}^2}$				
where $I_{\rm eff}$ for a battened s	strut should be	calculated as		
$I_{\rm eff} = 0, 5 \cdot h_0^2 \cdot A_0$	$_{\rm h}$ + 2 · μ · $I_{\rm ch}$			Eq. (6.74)
in which				
$A_{\rm ch}$ is the area of	f one chord			
$I_{\rm ch}$ is the second	moment of ar	ea of one chord		
μ is determined	according to T	Table 6.8 in EN 1993-1	-1 and	<u>Table 6.8</u>
h_0 is the distance	e between the	centroids of the chords		
Except for this it is desig	ned for buckli	ng as described above.		
Check of the chords in a	-			<u>EN 1993-1-1</u> §6.4
For a member with two i determined as	dentical chord	s the design force $N_{ch,E}$	_d should be	30.1
$N_{\rm ch,Ed} = 0, 5 \cdot N_{\rm Ed}$	$_{\rm i} + \frac{M_{\rm Ed} \cdot h_0 \cdot A_{\rm cl}}{2 \cdot I_{\rm eff}}$	<u>h</u>		Eq. (6.69)
where				
$M_{\rm Ed} = \frac{N_{\rm Ed} \cdot e_0 + \frac{N_{\rm Ed} \cdot e_0}{1 - \frac{N_{\rm Ed}}{N_{\rm cr}}}$	$\frac{M_{\rm Ed}^{\rm I}}{S_{\rm v}}$			
in which				
$S_{\rm v} = \frac{2 \cdot \pi^2 \cdot EI_{\rm ch}}{a^2}$	(stiff batt	tens)		Eq. (6.73)
$e_0 = \frac{L}{500}$				
$M_{\rm Ed}^{\rm I}$ is the desident the chord	gn value of the	e maximum moment in	the middle of	
<i>a</i> is the distance	between batte	ens		
<i>L</i> is the distance	between later	al supports or the buck	ling length, $L_{\rm cr}$	

	Document Ref:	SX017a-EN-EU	Sheet 8 of	23	
CALCULATION SHEET	Title	Example: Single span tr roof using battened secti		e for a low pitch	
steel	Eurocode Ref	Eurocode Ref EN 1993-1-1, EN 1993-1-8 & EN 1990			
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005	
	Checked by	Bernt Johansson	Date	August 2005	
Upper chord The member in the upper Compression force: Tension force: Tension force: Only this member will be then the other members in Two UPE 160 S355 are us the web members are use $f_y = 355 \cdot 10^6$ Pa $E = 210 \cdot 10^9$ Pa $A = A_{ch} = 2,17 \cdot 1$ $I_y = 9,11 \cdot 10^{-6}$ m $I_z = I_{ch} = 1,07 \cdot 1$ $W_{pl} = 40,7 \cdot 10^{-6}$ $h_0 = 0,1254$ m (U $\alpha = 0,49$ (buckli	Made by Checked by Checked by Checked by Checked by Checked by Checked by $N_{Ed} = -721 \text{ kJ}$ $N_{Ed} = 262 \text{ kN}$ checked since the upper change as upper of the upper of the upper of 10^{-3} m^2 (one profile 0^{-6} m^4 (one profile 0^{-6} m^4 (one profile UPE 80 in between the upper of 0^{-6} m^4 (one profile)	Jonas Gozzi Bernt Johansson rries the highest force is N (under dead load and value of the dea	Date Date Date	August 2005	

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet	9	of	23	
	Title	Example: Single span trus roof using battened section			frame	for a lo	w pitch
steel	Eurocode Ref	EN 1993-1-1, EN 1993-1-8	8 & E.	N 199	0		
Eurocodes made easy	Made by	Jonas Gozzi Date				Augus	t 2005
	Checked by	Bernt Johansson		Date		Augus	t 2005
In-plane buckling							
$L_{\rm cr} = L/\cos(5^\circ)$	$= 1, 5 / \cos(5^{\circ}) =$	= 1,51 m					
$N_{\rm cr} = \frac{\pi^2 \cdot EI_{\rm y}}{L_{\rm cr}^2} =$	$\frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 2}{1.51}$	$\frac{9.9,11\cdot10^{-6}}{2}$					
$N_{\rm cr} = 16\ 562\ 000$							
$\overline{\lambda} = \sqrt{\frac{2 \cdot 2,17 \cdot 10}{1656}}$	$\frac{10^{-3} \cdot 355 \cdot 10^6}{22 \cdot 10^3} = 0$	0,305					
$\varPhi = 0,5 \begin{bmatrix} 1+0,49 \end{bmatrix}$	9(0,305-0,2)	$(+0,305^2] = 0,572$					
$\chi = \frac{1}{0.572 + \sqrt{0.5}}$	$\frac{1}{572^2 - 0.305^2}$	= 0,947					
0,947 · 2	$\cdot 2,17 \cdot 10^{-3} \cdot 353$	$5 \cdot 10^{6}$					
$N_{\rm b,Rd} = \frac{0,947 \cdot 2}{1000}$	1,0						
$N_{\rm cr} = 1\ 459\ 000\ J$	N = 1459 kN >	$ 721 \text{ kN} = N_{\text{Ed}} $					
		Lu					
						1	

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet 10 of	23
	Title	Example: Single span tru roof using battened section		e for a low pitch
	Eurocode Ref	EN 1993-1-1, EN 1993-1	-8 & EN 1990	
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005
	Checked by	Bernt Johansson	Date	August 2005
Design of battened strut The upper chord is design		-		f
$a \sim 1,0$ m, meaning that a in between those position	18.	-		
Purlins that work as later out of plane buckling len		•	d joint, i.e. the	
$L_{\rm cr} = L/\cos(5^\circ)$	$=3,0/\cos(5^{\circ})$	=3,01 m		
		$0,1254^2 \cdot 2,17 \cdot 10^{-3} + 2 \cdot$	$1,07 \cdot 10^{-6}$	
$I_1 = 19, 2 \cdot 10^{-6} \mathrm{m}$	4			
$i_0 = \sqrt{\frac{I_1}{2 \cdot A_{\rm ch}}} = \sqrt{\frac{I_1}{2$	$\frac{19,2\cdot10^{-6}}{2\cdot2,17\cdot10^{-3}} =$	= 0,067 m		
$\lambda = \frac{L_{\rm cr}}{i_0} = \frac{3,01}{0,067}$	$=44,9 \Rightarrow \mu =$	1,0		
$I_{eff} = I_1 = 19, 2 \cdot 1$	$10^{-6} \mathrm{mm}^4$			
$N_{\rm cr} = \frac{\pi^2 \cdot 210 \cdot 1}{3}$	$\frac{0^9 \cdot 19, 2 \cdot 10^{-6}}{0.01^2}$	= 4 392 000 N = 4392 k	Ň	
		$\frac{10^9 \cdot 1,07 \cdot 10^{-6}}{0^2} = 4\ 435\ 0$	00 N = 4435 kM	N
$M_{\rm Ed} = \frac{N_{\rm Ed} \cdot e_0 + \frac{N_{\rm Ed}}{1 - \frac{N_{\rm Ed}}{N_{\rm cr}}}$	$\frac{M_{\rm Ed}^{\rm I}}{\frac{N_{\rm Ed}}{S_{\rm v}}} = \frac{721}{1 - \frac{72}{439}}$	$\frac{\frac{3,01}{500} + 0}{\frac{1}{92} - \frac{721}{4435}} = 6,6 \text{ kNm}$		
$N_{\rm ch,Ed} = 0, 5 \cdot N_{\rm Ed}$	$H_{\rm H} + \frac{M_{\rm Ed} \cdot h_0 \cdot A_{\rm cl}}{2 \cdot I_{\rm eff}}$	$h = 0, 5 \cdot 721 + \frac{6, 4 \cdot 0, 123}{2 \cdot 19}$	$54 \cdot 2,17 \cdot 10^{-3}$ $0,2 \cdot 10^{-6}$	
$N_{\rm ch, Ed} = 405,9 {\rm kl}$	N			

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet	12	of	23		
	Title	<i>Example: Single span truss and post frame for a low pitch roof using battened section chords</i>						
	Eurocode Ref	EN 1993-1-1, EN 1993-1-8 & EN 1990						
Eurocodes made easy	Made by	Jonas Gozzi		Date		Augus	st 2005	
	Checked by	Bernt Johansson		Date August 20			st 2005	

Both axial force and shear force occur simultaneously. If the design shear force, V_{Ed} , does not exceed 50% of the plastic shear resistance no reduction of the resistance to axial force is needed. $\frac{\text{EN 1993-1-1}}{\text{\$6.2.10}}$

$$V_{\rm pl,Rd} = \frac{A_{\rm v} \cdot f_{\rm y} / \sqrt{3}}{\gamma_{\rm M0}}$$

where

 $A_{\rm v}$ is the shear area, in this case the flange area of the U-section

$$A_v = 2 \cdot h_f \cdot t_f = 2 \cdot (70 - 5, 5 - 12) \cdot 9, 5 \cdot 10^{-6} = 9,975 \cdot 10^{-4} \text{ m}^2$$

$$V_{\rm pl,Rd} = \frac{2 \cdot 9,975 \cdot 10^{-4} \cdot 355 \cdot 10^{6} / \sqrt{3}}{1.0}$$

 $V_{\rm pl,Rd}$ = 408 900 N = 409 kN > 6,7 kN = $V_{\rm Ed}$

$$0.5 \cdot V_{\text{pl.Rd}} = 0.5 \cdot 409 = 204.5 \text{ kN} > 6.7 \text{ kN} = V_{\text{Ed}}$$

No reduction of the buckling resistance of the chord needs to be made.

At the batten position, the combination of moment and axial force needs to be checked. Equation (6.62) in EN 1993-1-1 can for this case be reduced to

$$\frac{N_{\rm ch,Ed}}{N_{\rm b,Rd}} + k_{\rm zz} \frac{M_{\rm ch,Ed}}{M_{\rm z,Rd}} \le 1,0$$

EN 1993-1-1

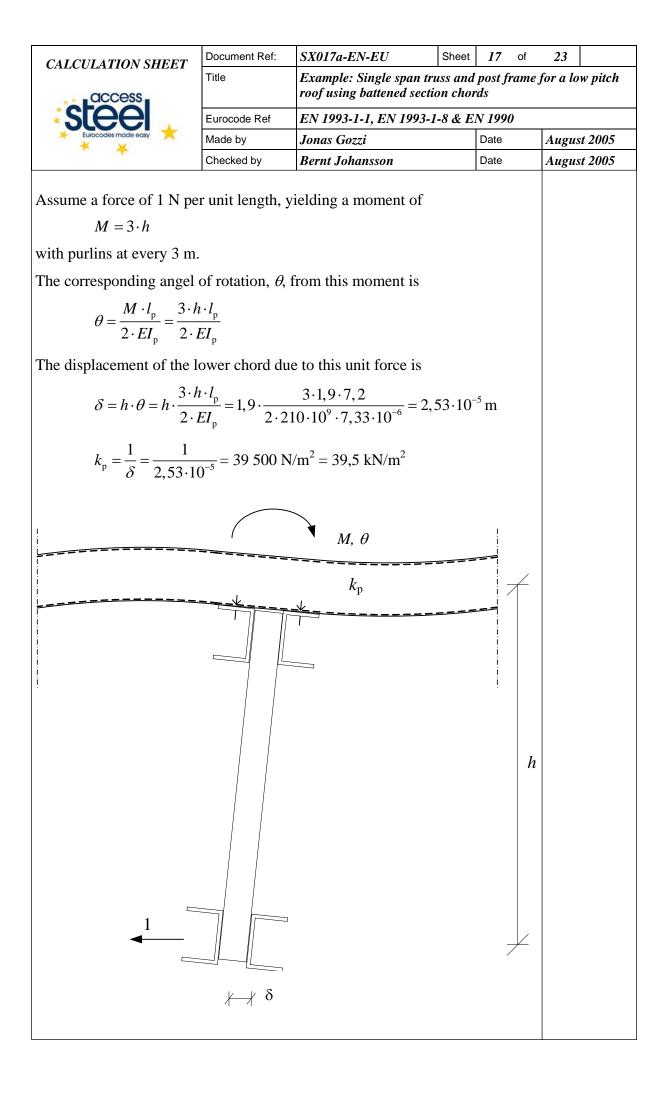
$$M_{z,Rd} = M_{pl,Rd} = \frac{W_{pl} \cdot f_y}{\gamma_{M0}} = \frac{40, 7 \cdot 10^{-6} \cdot 355 \cdot 10^{6}}{1,0}$$

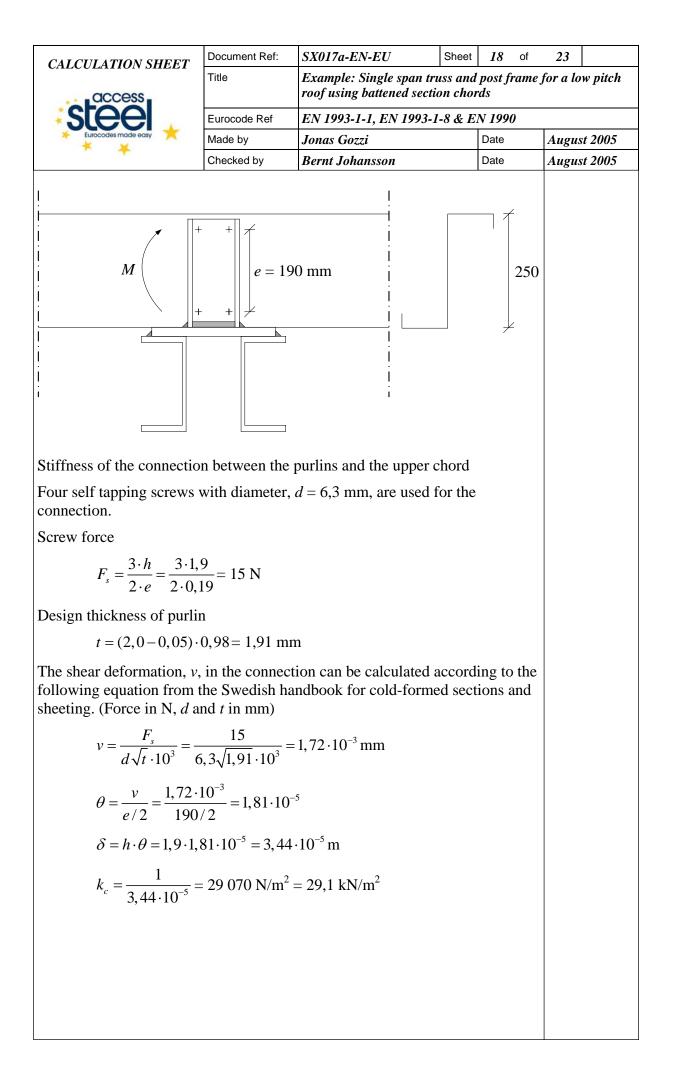
$$M_{z,Rd} = 14\ 450\ N = 14,4\ kNm$$

$$k_{zz} = C_{mz} \left(1 + \left(2 \cdot \overline{\lambda}_{z} - 0, 6\right) \frac{N_{ch,Ed}}{N_{b,Rd}} \right) \le C_{mz} \left(1 + 1, 4 \frac{N_{ch,Ed}}{N_{b,Rd}} \right)$$

$$C_{mz} = 0.9 \qquad (sway buckling)$$

$$k_{zz} = 0.9 \left(1 + \left(2 \cdot 0.589 - 0.6 \right) \frac{405.9}{610} \right) = 1.25$$

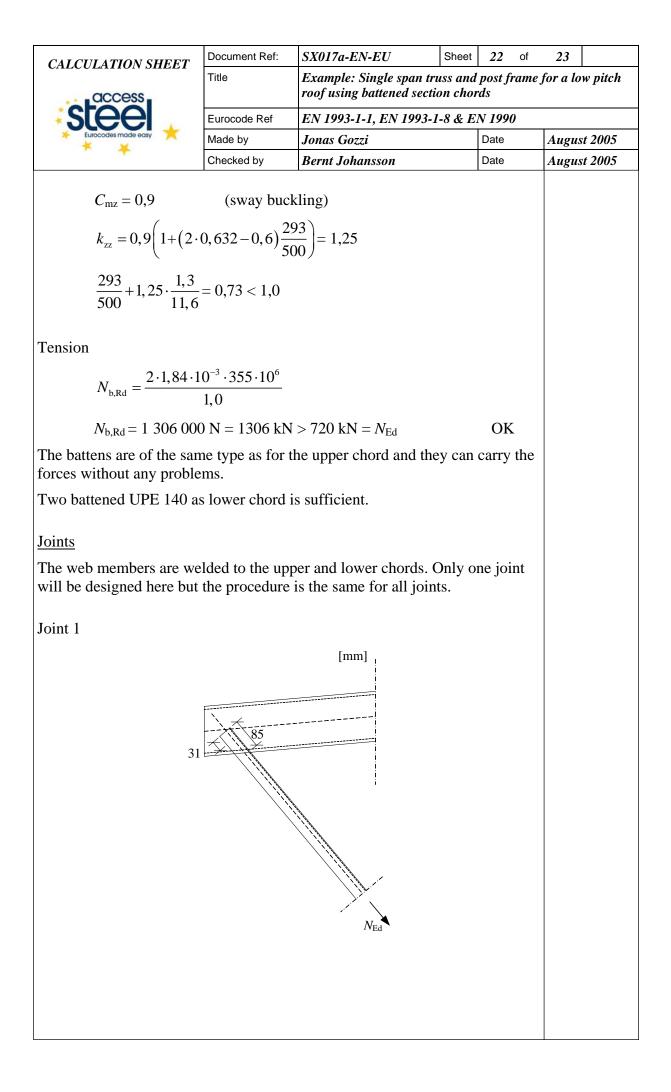

$$\frac{405,9}{610} + 1,25 \cdot \frac{1,7}{14,4} = 0,81 < 1,0$$


	Document Ref:	SX017a-EN-EU	Sheet 13 c	of 23
CALCULATION SHEET	Title	Example: Single span roof using battened se		me for a low pitch
	Eurocode Ref	EN 1993-1-1, EN 199		
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005
· · · · ·	Checked by	Bernt Johansson	Date	August 2005
$M_{\rm Ed} = \frac{V_{\rm Ed} \cdot a}{2} = \frac{1}{2}$ $M_{\rm pl,Rd} = \frac{W_{\rm pl} \cdot f_{\rm y}}{\gamma_{\rm M0}}$	Checked by Checked by 200 mm long U $\frac{004 \cdot 0, 200^2}{4} = \frac{1}{6000}$ $\frac{5000}{0,1254} = 53,4$ $\frac{55 \cdot 10^6}{0,1254} = 53,4$ $\frac{55 \cdot 10^6}{1,0} = 3,35$ $= \frac{40 \cdot 10^{-6} \cdot 355}{1,0}$	<i>Bernt Johansson</i> JPE 80 40·10 ⁻⁶ m ³ kN -4 m ² 164 000 N = 164 kN kNm	Date	August 2005From trade literatureEN 1993-1-1 Figure 6.11
Tension resistance of the $N_{\rm b,Rd} = \frac{A \cdot f_{\rm y}}{\gamma_{\rm M0}} = -$		$\frac{255 \cdot 10^6}{1541} = 1541 \text{ kN} > 1541 \text{ kN}$	$262 \text{ kN} = N_{\text{Ed}}$	
Web members				
The most utilized web me	embers are			
Compression force: 12-2	$N_{\rm Ed} = -189 {\rm kM}$	N (under dead load a	nd snow load)	
Tension force: 1-12	$N_{\rm Ed} = 214 \ \rm kN$	(under dead load an	d snow load)	
The web members are att truss and their strong dire			the plane of the	

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet	14	of	23		
	Title	Example: Single span tr roof using battened sect			frame	for a la	w pitch	
	Eurocode Ref	EN 1993-1-1, EN 1993-	1-8 & E	N 199	0			
Eurocodes made easy	Made by	Jonas Gozzi		Date		August 2005		
	Checked by	Bernt Johansson		Date		Augu	st 2005	
UPE 80 is used for the we	eb members.							
$A = 1,01 \cdot 10^{-3} \mathrm{m}^2$							n trade	
$I_{\rm y} = 1,07 \cdot 10^{-6} {\rm m}$	4					Liter	ature	
$I_z = 25 \cdot 10^{-8} \mathrm{m}^4$						EN 1	993-1-1	
$\alpha = 0,49$ (buckling)	ng curve c)					<u>§6.3.</u>		
L = 1,31 m								
In-plane buckling								
$L_{\rm cr} = 0, 9 \cdot L = 0, 9$	$9 \cdot 1,31 = 1,18$ r	n						
$\pi^2 \cdot EI$	$\tau^2 \cdot 210 \cdot 10^9 \cdot 2$	$5 \cdot 10^{-8}$						
$N_{\rm cr} = -\frac{1}{L_{\rm cr}^2} = -$	1,18 ²	$5 \cdot 10^{-8}$ = 372 100 N = 3	372,11	٢N				
$\overline{\lambda} = \sqrt{\frac{1,01 \cdot 10^{-3} \cdot 1}{372,1}}$	$\frac{\overline{355 \cdot 10^6}}{\cdot 10^3} = 0.9$	982						
$\varPhi = 0,5 \begin{bmatrix} 1+0,49 \end{bmatrix}$	0(0,982-0,2)	$+0,982^{2}$] = 1,17						
$\chi = \frac{1}{1,17 + \sqrt{1,17}}$	$\frac{1}{2^2-0.982^2}=0$,554						
$N_{\rm b,Rd} = \frac{0,554\cdot 1,}{1}$	$\frac{01 \cdot 10^{-3} \cdot 355 \cdot 1}{1,0}$	06						
$N_{\rm b,Rd} = 198\ 600\ { m M}$	N = 199 kN >	189 kN = $N_{\rm Ed}$						
						1		

	Document Ref:	SX017a-EN-EU She	et 15 c	of 23	
CALCULATION SHEET	Title	Example: Single span truss a	ind post frai	_	
access		roof using battened section chords			
	Eurocode Ref	EN 1993-1-1, EN 1993-1-8 &			
* *	Made by Checked by	Jonas Gozzi Bernt Johansson	Date Date	August 2005 August 2005	
	Onecked by	Derni Jonansson	Date	August 2005	
Out of plane buckling					
$L_{\rm cr} = L = 1,31 {\rm m}$	L				
$N_{\rm cr} = \frac{\pi^2 \cdot EI}{I^2} = $	$\frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 1}{1.21^2}$	$\frac{.07 \cdot 10^{-6}}{.07 \cdot 10^{-6}} = 1\ 292\ 000\ N = 1$	292 kN		
	1,51				
$\overline{\lambda} = \sqrt{\frac{1,01 \cdot 10^{-3}}{1292}}$	$\frac{\cdot 355 \cdot 10^6}{\cdot 10^3} = 0.5$	527			
$\varPhi = 0,5 \begin{bmatrix} 1+0,49 \end{bmatrix}$	9(0,527-0,2)	$+0,527^{2}$]=0,719			
$\chi = \frac{1}{0,719 + \sqrt{0,719}}$	$\frac{1}{719^2 - 0,527^2}$	= 0,828			
$N_{\rm b,Rd} = \frac{0,828\cdot 1}{},$	$\frac{01 \cdot 10^{-3} \cdot 355 \cdot 1}{1,0}$	106			
$N_{\rm b,Rd} = 297\ 000$	= 297 kN > 18	9 kN = $N_{\rm Ed}$			
Tension resistance of the	web members				
$N_{\rm b,Rd} = \frac{1010 \cdot 35}{1,0}$	$\frac{65}{2} = 358\ 600\ N$	$M = 359 \text{ kN} > 214 \text{ kN} = N_{\text{Ed}}$			
Web members of UPE 80) are enough.				
Lower chord					
The most utilized member	er in the lower	chord is the member 19-20).		
Compression force:	$N_{\rm Ed} = -253 \rm kM$	N (under dead load and win	nd load)		
Tension force:	$N_{\rm Ed} = 720 \ \rm kN$	(under dead load and snow	w load)		
Two UPE 140 are used for	or the lower ch	ord.			
$A_{\rm ch} = 1,84 \cdot 10^{-3}$	m ² (one profile	e)		From trade	
$I_{\rm y} = 5,99 \cdot 10^{-6} {\rm m}$	n ⁴ (one profile))		literature	
$I_z = I_{\rm ch} = 79 \cdot 10^{\circ}$	⁻⁸ m ⁴ (one prof	ïle)			
$h_0 = 0,1234 \text{ m}$	_				
$\alpha = 0,49$ (buckli	ng curve c)			<u>EN 1993-1-</u> §6.3.1.2	

Title Example: Single span truss and post frame for a low pitol roof using battened section chords Eurocode Ref EN 1993-1-1, EN 1993-1-8 & EN 1990 Made by Jonas Gozzi Date August 200.	CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet 16 of	23	
$\boxed{\begin{array}{c c c c c c c c c } \hline Made by & Jonas Gozzi & Date & August 200. \\ \hline Checked by & Bernt Johansson & Date & August 200. \\ \hline Checked by & Bernt Johansson & Date & August 200. \\ \hline In-plane buckling \\ L_{cr} = L = 1,51 \text{ m} \\ N_{cr} = \frac{\pi^2 \cdot EI}{L_{cr}^2} = \frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 2 \cdot 5,99 \cdot 10^{-6}}{1,51^2} = 10\ 890\ 000\ \text{N} = 10890\ \text{kN} \\ \hline \overline{\lambda} = \sqrt{\frac{2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{10889 \cdot 10^3}} = 0,346 \\ \varPhi = 0,5 \left[1 + 0,49 \left(0,346 - 0,2\right) + 0,346^2\right] = 0,596 \\ \chi = \frac{1}{0,596 + \sqrt{0,596^2} - 0,346^2} = 0.925 \\ N_{b,Rd} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0} \\ N_{b,Rd} = 1\ 208\ 000\ \text{N} = 1208\ \text{kN} > 253\ \text{kN} = N_{Ed} \\ \hline Out of plane buckling (lateral buckling) of the battened lower chord \\ \hline \text{In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p, the screws between purlins k_c and upper chord and the web members k_w.A Z250x2,0 section is used as purlins I_z = 7,33 \cdot 10^{-6} \text{ m}^4h = 1,9\ \text{m} (height of truss in the most utilized section) l_p = 7,2\ \text{m} (distance between trusses)$		Title			e for a low pitch	
Checked byBernt JohanssonDateAugust 2000In-plane buckling $L_{cr} = L = 1,51 \text{ m}$ $N_{cr} = \frac{\pi^2 \cdot EI}{L_{cr}^2} = \frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 2 \cdot 5,99 \cdot 10^{-6}}{1,51^2} = 10\ 890\ 000\ \text{N} = 10890\ \text{kN}$ $\bar{\lambda} = \sqrt{\frac{2 \cdot 1.84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{10889 \cdot 10^3}} = 0,346$ $\mathcal{P} = 0,5[1+0,49(0,346-0,2)+0,346^2] = 0,596$ $\chi = \frac{1}{0,596 + \sqrt{0,596^2 - 0,346^2}} = 0,925$ $N_{b,Rd} = \frac{0,925 \cdot 2 \cdot 1.84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0}$ 	Steel	Eurocode Ref	Eurocode Ref EN 1993-1-1, EN 1993-1-8 & EN 1990			
In-plane buckling $L_{cr} = L = 1,51 \text{ m}$ $N_{cr} = \frac{\pi^2 \cdot EI}{L_{cr}^2} = \frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 2 \cdot 5,99 \cdot 10^{-6}}{1,51^2} = 10\ 890\ 000\ \text{N} = 10890\ \text{kN}$ $\overline{\lambda} = \sqrt{\frac{2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{10889 \cdot 10^3}} = 0,346$ $\phi = 0,5\left[1 + 0,49(0,346 - 0,2) + 0,346^2\right] = 0,596$ $\chi = \frac{1}{0,596 + \sqrt{0,596^2 - 0,346^2}} = 0,925$ $N_{b,Rd} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0}$ $N_{b,Rd} = 1\ 208\ 000\ \text{N} = 1208\ \text{kN} > 253\ \text{kN} = N_{Ed}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6}\ \text{m}^4$ $h = 1,9\ \text{m}$ (height of truss in the most utilized section) $I_p = 7,2\ \text{m}$ (distance between trusses)	Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005	
$L_{cr} = L = 1,51 \text{ m}$ $N_{cr} = \frac{\pi^2 \cdot EI}{L_{cr}^2} = \frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 2 \cdot 5,99 \cdot 10^{-6}}{1,51^2} = 10\ 890\ 000\ \text{N} = 10890\ \text{kN}$ $\overline{\lambda} = \sqrt{\frac{2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{10889 \cdot 10^3}} = 0,346$ $\Phi = 0,5\left[1+0,49(0,346-0,2)+0,346^2\right] = 0,596$ $\chi = \frac{1}{0,596 + \sqrt{0,596^2 - 0,346^2}} = 0,925$ $N_{b,Rd} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0}$ $N_{b,Rd} = 1\ 208\ 000\ \text{N} = 1208\ \text{kN} > 253\ \text{kN} = N_{Ed}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_{p} , the screws between purlins k_{c} and upper chord and the web members k_{w} . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ h = 1,9 m (height of truss in the most utilized section) $I_p = 7,2 \text{ m}$ (distance between trusses)		Checked by	Bernt Johansson	Date	August 2005	
$N_{\rm er} = \frac{\pi^2 \cdot EI}{L_{\rm er}^2} = \frac{\pi^2 \cdot 210 \cdot 10^9 \cdot 2 \cdot 5,99 \cdot 10^{-6}}{1,51^2} = 10\ 890\ 000\ \text{N} = 10890\ \text{kN}$ $\overline{\lambda} = \sqrt{\frac{2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{10889 \cdot 10^3}} = 0,346$ $\mathcal{P} = 0,5\left[1+0,49\left(0,346-0,2\right)+0,346^2\right] = 0,596$ $\chi = \frac{1}{0,596 + \sqrt{0,596^2 - 0,346^2}} = 0,925$ $N_{\rm b,Rd} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0}$ $N_{\rm b,Rd} = 1\ 208\ 000\ \text{N} = 1208\ \text{kN} > 253\ \text{kN} = N_{\rm Ed}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins $k_{\rm p}$, the screws between purlins $k_{\rm c}$ and upper chord and the web members $k_{\rm w}$. A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6}\ \text{m}^4$ $h = 1,9\ \text{m}$ (height of truss in the most utilized section) $I_p = 7,2\ \text{m}$ (distance between trusses)	In-plane buckling					
$\overline{\lambda} = \sqrt{\frac{2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{10889 \cdot 10^3}} = 0,346$ $\mathcal{P} = 0,5 \left[1 + 0,49 (0,346 - 0,2) + 0,346^2 \right] = 0,596$ $\chi = \frac{1}{0,596 + \sqrt{0,596^2 - 0,346^2}} = 0,925$ $N_{\text{b,Rd}} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0}$ $N_{\text{b,Rd}} = 1 \ 208 \ 000 \ \text{N} = 1208 \ \text{kN} > 253 \ \text{kN} = N_{\text{Ed}}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_{p} , the screws between purlins k_{c} and upper chord and the web members k_{w} . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \ \text{m}^4$ $h = 1,9 \ \text{m}$ (height of truss in the most utilized section) $l_p = 7,2 \ \text{m}$ (distance between trusses)						
	$N_{\rm cr} = \frac{\pi^2 \cdot EI}{L_{\rm cr}^2} = \frac{\pi}{2}$	$\frac{122}{1.51^2} \cdot 210 \cdot 10^9 \cdot 2 \cdot 151^2$	$\frac{5,99 \cdot 10^{-6}}{10} = 10\ 890\ 00$	00 N = 10890 kM	V	
$\chi = \frac{1}{0,596 + \sqrt{0,596^2 - 0,346^2}} = 0,925$ $N_{b,Rd} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^6}{1,0}$ $N_{b,Rd} = 1 \ 208 \ 000 \ N = 1208 \ kN > 253 \ kN = N_{Ed}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \ m^4$ $h = 1,9 \ m$ (height of truss in the most utilized section) $l_p = 7,2 \ m$ (distance between trusses)	$\overline{\lambda} = \sqrt{\frac{2 \cdot 1,84 \cdot 10^{-1}}{10889}}$	$\frac{\overline{3\cdot 355\cdot 10^6}}{9\cdot 10^3} = 0$),346			
$N_{b,Rd} = \frac{0,925 \cdot 2 \cdot 1,84 \cdot 10^{-3} \cdot 355 \cdot 10^{6}}{1,0}$ $N_{b,Rd} = 1 \ 208 \ 000 \ N = 1208 \ kN > 253 \ kN = N_{Ed}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ $h = 1,9 \ m$ (height of truss in the most utilized section) $l_p = 7,2 \ m$ (distance between trusses)	$\boldsymbol{\varPhi} = 0,5 \begin{bmatrix} 1+0,49 \end{bmatrix}$	(0,346-0,2)-	$+0,346^2$] = 0,596			
$N_{b,Rd} = 1\ 208\ 000\ N = 1208\ kN > 253\ kN = N_{Ed}$ Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ $h = 1,9 \text{ m}$ (height of truss in the most utilized section) $I_p = 7,2 \text{ m}$ (distance between trusses)	$\chi = \frac{1}{0,596 + \sqrt{0,596}}$	$\frac{1}{696^2 - 0.346^2}$	= 0,925			
Out of plane buckling (lateral buckling) of the battened lower chord In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ h = 1,9 m (height of truss in the most utilized section) $l_p = 7,2 \text{ m}$ (distance between trusses)	$N_{\rm b,Rd} = \frac{0.925 \cdot 2 \cdot}{}$	$\frac{1,84 \cdot 10^{-3} \cdot 355}{1,0}$	10^{6}			
In this case the lower chord does not have any lateral supports and should be designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ h = 1,9 m (height of truss in the most utilized section) $l_p = 7,2 \text{ m}$ (distance between trusses)	$N_{\rm b,Rd} = 1\ 208\ 000$	N = 1208 kN	$> 253 \text{ kN} = N_{\text{Ed}}$			
designed with a continuous elastic lateral restraint. This lateral restraint depends on the stiffness of the purlins k_p , the screws between purlins k_c and upper chord and the web members k_w . A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ h = 1,9 m (height of truss in the most utilized section) $l_p = 7,2 \text{ m}$ (distance between trusses)	Out of plane buckling (lat	teral buckling)) of the battened lower	chord		
A Z250x2,0 section is used as purlins $I_z = 7,33 \cdot 10^{-6} \text{ m}^4$ h = 1,9 m (height of truss in the most utilized section) $l_p = 7,2 \text{ m}$ (distance between trusses)	designed with a continuou depends on the stiffness of	us elastic later of the purlins <i>k</i>	al restraint. This latera	l restraint	<u>SN027</u>	
h = 1.9 m (height of truss in the most utilized section) $l_p = 7.2 \text{ m}$ (distance between trusses)	A Z250x2,0 section is use	ed as purlins				
$l_{\rm p} = 7,2 \mathrm{m}$ (distance between trusses)	$I_z = 7,33 \cdot 10^{-6} \mathrm{m}$	4				
	h = 1.9 m	(height of	truss in the most utilize	ed section)		
Stiffness, <i>k</i> _p , for the purlins	$l_{\rm p} = 7,2 {\rm m}$	(distance b	between trusses)			
	Stiffness, k_p , for the purlin	ns				



CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet	19	of	23	
	Title	Example: Single span tra roof using battened section			frame	for a lo	w pitch
	Eurocode Ref	ode Ref EN 1993-1-1, EN 1993-1-8 & EN 1990					
Furocodes made easy	Made by	Jonas Gozzi		Date		Augus	st 2005
	Checked by	Bernt Johansson		Date		Augus	at 2005
Stiffness, $k_{\rm w}$, of the web r	nembers					<u>SN02</u>	<u>27</u>
Only the web members the in the calculations of the		• I		are us	ed		
$I_w = 1,07 \cdot 10^{-6} \mathrm{m}$	4						
$l_1 = 3,0 \text{ m}$ (distant	nce between pu	urlins)					
$l_{\rm w} = 2,2 \mathrm{m}$ (lengt	h of web mem	ber)					
$k_w = 2 \cdot \frac{3 \cdot EI_w}{l_1 \cdot l_w^3} =$	$2 \cdot \frac{3 \cdot 210 \cdot 10^9 \cdot 3}{3,0 \cdot 2}$	$\frac{1,07\cdot 10^{-6}}{2,2^3}$					
$k_{\rm w} = 42\ 200\ { m N/m}$	$h^2 = 42,2 \text{ kN/m}$	2					
The total stiffness							
$k_{\rm s} = \frac{1}{\frac{1}{k_{\rm p}} + \frac{1}{k_{\rm c}} + \frac{1}{k_{\rm v}}}$	$\frac{1}{\frac{1}{39,5} + \frac{1}{29,5}}$	$\frac{1}{1 + \frac{1}{42, 2}} = 12,0 \text{ kN/m}^2$					
Effective second moment	of area for the	e lower chord					
$I_1 = 0, 5 \cdot h_0^2 \cdot A_{ch}$	$+2 \cdot I_{\rm ch} = 0,5 \cdot 0$	$0,1234^2 \cdot 1,84 \cdot 10^{-3} + 2 \cdot 10^{-3}$	79·10 ⁻	-8		EN 1	<u>993-1-1</u>
$I_1 = 15,59 \cdot 10^{-6} \mathrm{m}$	n ⁴					<u>§6.4</u>	
$\dot{i}_0 = \sqrt{\frac{I_1}{2 \cdot A_{\rm ch}}} = \frac{I_1$	$\frac{\overline{15,59\cdot10^{-6}}}{2\cdot1,84\cdot10^{-3}} =$	0,065 m				Table	<u>e 6.8</u>
The wave length, l_0 , is cal	lculated accord	ling to				<u>SN02</u>	27
$l_{\rm c} = \pi \sqrt[4]{\frac{EI_1}{k_{\rm s}}} = \pi \sqrt[4]{$	$\frac{210 \cdot 10^9 \cdot 15, 5}{12 \cdot 10^3}$	$\frac{59 \cdot 10^{-6}}{10^{-6}} = 12,8 \text{ m}$					
$\lambda = \frac{l_{\rm c}}{i_0} = \frac{12,8}{0,065} =$	$= 187 \rightarrow \mu = 0$						
$I_{eff} = 0, 5 \cdot 0, 1234$	$4^2 \cdot 1,84 \cdot 10^{-3} =$	$14,0.10^{-6}\mathrm{m}^4$					
The effective second more length, l_c	nent of area w	ill give a new value of	the wa	ave			
$l_{\rm c} = \pi \sqrt[4]{\frac{210 \cdot 10^9}{12}}$	$\frac{\cdot 14, 0 \cdot 10^{-6}}{\cdot 10^3} = 1$	2,4 m					

CALCULATION SHEET	Document Ref:	SX017a-EN-EU S	heet 20 of	23
	Title	Example: Single span truss roof using battened section		e for a low pitch
	Eurocode Ref			
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005
	Checked by	Bernt Johansson	Date	August 2005
$N_{\rm cr} = \sqrt{k_{\rm s} \cdot EI_{\rm eff}}$ $\sqrt{k_{\rm s} \cdot EI_{\rm eff}} = \sqrt{12}$ $S_{\rm v} / \sqrt{k_{\rm s} \cdot EI_{\rm eff}} =$ $N_{cr} = 187, 8 \left(2 - \frac{1}{2}\right)$	pacing of $a \approx 1$ $= \frac{2 \cdot \pi^2 \cdot 210 \cdot 1}{1,}$ $\left[2 - \frac{\sqrt{k_s \cdot EI_{eff}}}{S_v}\right]$ $2 \cdot 10^3 \cdot 210 \cdot 10^9$ $17,4 > 1$ $\frac{1}{17,4} = 365 \text{ k}$,0 m. $\frac{10^{9} \cdot 79 \cdot 10^{-8}}{0^{2}} = 3\ 275\ 000$ $\frac{1}{2} \text{ if } S_{v} / \sqrt{k_{s} \cdot EI_{\text{eff}}} > 1$ $\frac{1}{14,0 \cdot 10^{-6}} = 187\ 800\ \text{N} = 187\ 800\ 187\$	N = 3275 kN	
N _c	$\frac{P(1,89-0,2)}{P(1,89-0,2)} = 0,$ $\frac{P(1,89-0,2)}{P(1,89)^{2}} = 0,$ $\frac{P(1,89-0,2)}{P(1,89-0,2)} $	$[.1,89^{2}] = 2,70$,216 $5 \cdot 10^{6}$ 253 kN = $N_{\rm Ed}$	-	SN027

CALCULATION SHEET	Document Ref:	SX017a-EN-EU	Sheet 21 of	23		
	Title	Example: Single span truss and post frame for a low pin roof using battened section chords				
	Eurocode Ref					
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005		
	Checked by	Bernt Johansson	Date	August 2005		
The shear force that the b	battened strut	should be designed for	is			
$V_{\rm Ed} = \frac{\pi \cdot M_{\rm Ed}}{l_{\rm c}} = -$	$\frac{\pi \cdot 20,4}{12,4} = 5,2$	kN				
and the moment from this	s shear force a	at the position of the ba	ttens is			
$M_{\rm ch,Ed} = \frac{V_{\rm Ed} \cdot a}{4} =$	$=\frac{5,2\cdot 1,0}{4}=1,3$	3 kNm				
Buckling resistance of or	ne chord in lat	eral direction				
$L_{\rm cr} = a = 1,0 {\rm m}$						
$N_{\rm cr} = \frac{\pi^2 \cdot EI_{\rm ch}}{L_{\rm cr}^2} =$	$=\frac{\pi^2 \cdot 210 \cdot 10^9}{1,0^2}$	$\frac{.79 \cdot 10^{-8}}{} = 1\ 637\ 000\ N$	I = 1637 kN			
$\overline{\lambda} = \sqrt{\frac{1,84 \cdot 10^{-3}}{1637}}$	$\overline{\frac{\cdot 355 \cdot 10^6}{\cdot 10^3}} = 0,$	632				
$\varPhi = 0,5 \begin{bmatrix} 1+0,49 \end{bmatrix}$	9(0,632-0,2)	$+0,632^{2}]=0,806$				
$\chi = \frac{1}{0,806 + 0,00000000000000000000000000000000000$	$\frac{1}{806^2 - 0,632^2}$	== 0,766				
$N_{\rm b,Rd} = \frac{0,766\cdot 1}{},$	$\frac{.84 \cdot 10^{-3} \cdot 355 \cdot 1.0}{1.0}$	10 ⁶				
$N_{\rm b,Rd} = 500\ 000$	N = 500 kN >	$\sim 293 \text{ kN} = N_{\text{ch,Ed}}$				
From the upper chord it c not important for this cas		luded that the shear for	ce in the chord i	s		
At the batten position, the checked.	e combination	n of moment and axial f	orce needs to be	9		
$\frac{N_{\rm ch,Ed}}{N_{\rm b,Rd}} + k_{\rm zz} \frac{M_{\rm ch,I}}{M_{\rm z,R}}$						
		$\frac{6 \cdot 10^{-6} \cdot 355 \cdot 10^{6}}{1,0} = 11\ 60$		n		
$k_{\rm zz} = C_{\rm mz} \bigg(1 + \big(2$	$\cdot \overline{\lambda}_{z} = -0, 6 \Big) \frac{N_{ch,}}{N_{b,I}}$	$\left(\frac{\text{Ed}}{\text{Rd}}\right) \leq C_{\text{mz}} \left(1+1, 4\frac{N_{\text{ch,Ed}}}{N_{\text{b,Rd}}}\right)$				

	Document Ref:	SX017a-EN-EU	Sheet 23 of	23	
	Title	Example: Single spar roof using battened so		te for a low pitch	
steel	Eurocode Ref	EN 1993-1-1, EN 1993-1-8 & EN 1990			
Eurocodes made easy	Made by	Jonas Gozzi	Date	August 2005	
	Checked by	Bernt Johansson	Date	August 2005	
The force in the web mer	nber is				
$N_{\rm Ed} = 214 \ \rm kN$					
This force needs to be tra	insferred throu	gh the weld into the	upper chord.		
The weld will be a fillet v	weld with				
a = 4 mm					
$f_{\rm u} = 510 \ 10^6 \ {\rm Pa}$					
The resistance of the wel	d is determine	d according to		EN 1993-1-8	
$F_{\mathrm{w,Rd}} = f_{\mathrm{vw.d}} \cdot a$				<u>§4.5.3.3</u>	
where					
$f_{\rm vw.d} = \frac{f_{\rm u} / \sqrt{3}}{\beta_{\rm w} \cdot \gamma_{\rm M2}}$					
	fastan O	0.0		Table 4.1	
$\beta_{\rm w}$ is a correlation	on factor, $p_{\rm w} =$	0,9			
$\gamma_{M2} = 1,25$					
$F_{\rm w,Rd} = \frac{510 \cdot 10^6}{0,9 \cdot 1,}$	$\frac{\sqrt{3}}{25} \cdot 0,004 =$	1 047 000 N = 1047	kN/m		
Design criterion					
$F_{\rm w,Rd} \cdot l \ge N_{\rm Ed}$					
where					
<i>l</i> is the required	length of the v	veld			
$l \ge \frac{214}{1047} = 204$ r	nm				
With the design accordin the web member is	g to the figure	above the weld leng	th on one side of		
l = 85 + 31 = 11	6 mm				
As the upper chord consi to both yielding a symme					
$l = 2 \cdot 116 = 232$ m	mm				
which is sufficient.					
The truss has two UPE 10 two UPE 140 as lower ch		ord, UPE 80 as the v	veb members and		

Quality Record

RESOURCE TITLE	Example: Single span truss and post frame for a low pitch roof using battened section chords			
Reference(s)				
ORIGINAL DOCUMENT				
	Name	Company	Date	
Created by	Jonas Gozzi	SBI	28/07/2005	
Technical content checked by	Bernt Johansson	SBI	16/08/2005	
Editorial content checked by				
Technical content endorsed by the following STEEL Partners:				
1. UK	G W Owens	SCI	27/1/06	
2. France	A Bureau	СТІСМ	27/1/06	
3. Sweden	A Olsson	SBI	27/1/06	
4. Germany	C Müller	RWTH	27/1/06	
5. Spain	J Chica	Labein	27/1/06	
Resource approved by Technical Coordinator	G W Owens	SCI	27/07/06	
TRANSLATED DOCUMENT			<u>_</u>	
This Translation made and checked I	by:			
Translated resource approved by:				