ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>bauforumstahl e.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme holder</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Declaration number</td>
<td>EPD-BFS-20130094-IBG1-EN</td>
</tr>
<tr>
<td>Issue date</td>
<td>25.10.2013</td>
</tr>
<tr>
<td>Valid to</td>
<td>24.10.2018</td>
</tr>
</tbody>
</table>

Structural Steel: Sections and Plates

bauforumstahl e.V.

www.bau-umwelt.com / https://epd-online.com
1. General Information

bauforumstahl e.V.

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
EPD-BFS-20130094-IBG1-EN

This Declaration is based on the Product Category Rules:
Structural steels, 07-2012
(PCR tested and approved by the independent expert committee)

Issue date
25.10.2013

Valid to
24.10.2018

Verification

The CEN Norm EN 15804 serves as the core PCR
Independent verification of the declaration and data according to ISO 14025

Dr. Burkhart Lehmann
(Managing Director IBU)

Dr. Frank Werner
(Independent tester appointed by SVA)

2. Product

2.1 Product description
This EPD applies to 1 t of structural steel (sections and plates). It covers steel products of the grades S235 to S960 rolled out to structural sections, merchant bars and heavy plates.

2.2 Application
Structural steels are intended for bolted, welded or otherwise connected constructions of buildings, bridges and other structures, or in composite steel and concrete structures.

Examples:
- single storey buildings (industrial and storage halls, etc.)
- multistorey buildings (offices, residential buildings, shops, car parks, high rise, etc.)
- bridges (railway bridge, road bridge, pedestrian bridge, etc.)
- other structures (power plants, stadiums, convention centers, airports, stations, etc.)

2.3 Technical Data
This EPD is valid for plates and sections of varied grades and different forms of delivery. Specific information on dimension tolerances, constructional data as well as mechanical and chemical properties can be found in the relevant literature and/or the standards /EN 1993/.

Constructional data

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7850</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>210000</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Coefficient of thermal expansion</td>
<td>12</td>
<td>10⁻⁶K⁻¹</td>
</tr>
<tr>
<td>Thermal conductivity at 20°C λ</td>
<td>48</td>
<td>W/(mK)</td>
</tr>
<tr>
<td>Melting point depending on the alloy proportions up to</td>
<td>1536</td>
<td>°C</td>
</tr>
</tbody>
</table>
2.4 Placing on the market / Application rules
For the placing on the market in the European Union the Regulation (EU) No 305/2011 applies. Products need a Declaration of Performance taking into consideration the harmonized product standard /EN 10025/.
Further product standards: /ASTM A36/, /A572/, /A992/, /A913/, /A283/, /A514/, /A573/, /A588/, /A633/, /A709/ and /ASTM 1066/.
For the application and use national provisions apply.
Fabrication standards: /EN 1090/, /AISC/, /AWS/
Quality control: /ISO 9001/ Monitoring according to the product standards, e.g. /EN 10025, Part 1/.

2.5 Delivery status
The dimensions of the declared products may vary according to the intended application.

2.6 Base materials / Ancillary materials
Structural steels are non-or low-alloy steel products whose carbon content is between 0 and 0.6%. Iron is the main component of steel sections and plates. The content of other elements is significantly less. The exact chemical composition varies depending on the steel grade and is characterized in the product standards listed in 2.4. Auxiliary materials:
A. For the production route "blast furnace with basic oxygen furnace": coking coal, coal, lime
B. For the production route "electric arc furnace": lime
For both production routes: aluminum, ferro alloys (ferro silicaon, ferro manganese, ferro-nickel, ferro niobium, ferro vanadium, ferro titanium)
The rates of these additives are depending on the steel grade.

2.7 Manufacture
In the integrated steel production route iron ore, (typical mix based on ferro-oxides Fe2O3) coke breeze, circulating components and other additives are mixed and sintered in preparation for being fed into the blast furnace together with coking coke, the reducing agent. Also pellets and / or lump may be used. The pig iron produced in the blast furnace is transferred into the basic oxygen furnace. In this vessel, the iron is converted into steel by lowering the carbon content of the iron by blowing oxygen into the melt (exothermic reaction). For temperature control, scrap (up to 35%) is added to the melt.
In the electric steel production route scrap is molten in an electric arc furnace to obtain liquid steel. Refining (lowering of sulphur, phosphorous and other tramp elements) and alloying (e.g. about 1% Mn, 0.2% Si) and / or micro-alloying (e.g. about 0.01% V) is applied to give the requested characteristics to the steel.
At the end of the steelmaking process, the liquid steel is transformed into a semi finished product in a continuous casting machine, or in special cases, poured into ingot molds to form blocks. The semi-product (slab, beam-blank, bloom or billet) is hot-rolled into the final product dimensions (heavy plate, wide flats, H-shape, I-shape, U-shape, L- shape and other merchant bars).
Quality control: /ISO 9001/ Monitoring according to the product standards, e.g. /EN 10025, Part 1/.

2.8 Environment and health during manufacturing
No measures relating to safety, health and environment protecting during the manufacturing process extending beyond national guidelines are required.

2.9 Product processing/Installation
Processing recommendations:
Planning, processing, implementation and intended use of section and plate constructions have to be carried out depending on the respective applications according to the generally recognized rules of engineering and manufacturer’s recommendations. The standards of /EN 1993/ and /EN 1994/ (EUROCODE EC3 and EC4) apply to the design of steel structures and composite steel and concrete structures. They include the requirements regarding serviceability, bearing capacity, durability and fire resistance of steel structures (EC3) and composite steel and concrete structures (EC4).
The Standard Parts 1+2 of EN 1090 apply to the execution of steel structures and include the requirements for factory production control. In addition, the European Standards will work in connection with national amendments, national instructions, guidelines and publications, as well as legal provisions.

2.10 Packaging
Structural steels are delivered unpacked.

2.11 Condition of use
The standards of /EN 1993/ and /EN 1994/ (EUROCODE EC3 and EC4) apply to the design of steel structures and composite steel and concrete structures. They include the requirements regarding serviceability, bearing capacity, durability and fire resistance of steel structures (EC3) and composite steel and concrete structures (EC4).

2.12 Environment and health during use
The intended use of sections and plates does not hazard health or environment in any known way.
2.13 Reference service life

A reference service life for structural steel as sections and plates is not declared. As construction products with many different applications, the purpose, possible corrosion protection and adequate maintenance are decisive for service life.

2.14 Extraordinary effects

Fire
The material is class A1, i.e. not flammable per /EN 13501/. The material doesn’t emit fumes or fire-gases. The critical temperature for the integrity of the structure is substantially depending on component loading and restraining conditions.

Fire safety
Thanks to the ductility of steel, steel-structures react resilient in the event of unforeseeable mechanical destruction: In case of tensile load necking will occur before cracking. In case of lasting high compression load, components of steel may buckle or bulge. No splintering or breaking edges shall result.

2.15 Re-use phase

General: Sections and plates of steel are recyclable by 100%. Thanks to the magnetic properties of steel, 99% of the used steel is regained after dismantling /European Commission Technical Steel Research/.

Reuse: Sections and plates can be reused. Currently, around 11% of the products are re-used after dismantling.

Recycling: Sections and plates can be recycled without any problems after dismantling. Currently, around 88% of the products are used for closed-loop recycling.

Data from industry estimates based on the following (internal) source: /European Commission Technical Steel Research/.

2.16 Disposal

Due to its high value as a resource, steel scrap is not disposed of, but instead in a well established cycle fed to reuse or recycling. However, in case of dumping due to collection loss no environmental impacts are expected.

Waste code according to European Waste Catalogue (EWC): 17 04 05 - iron and steel

2.17 Further information

Additional information on structural steel and constructing with steel can be obtained from bauforumstahl e.V. (www.bauforumstahl.de).

3. LCA: Calculation rules

3.1 Declared Unit
The declaration refers to the functional unit of 1 tone of Structural Steel: Sections and plates as specified in Part B requirements on the EPD for Structural Steel. The LCA is calculated based on averaged volume production data of the contributing plants.

Declared unit

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building material class acc. /EN 13501-1/</td>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>

3.2 System boundary
Type of the EPD: cradle to gate - with Options
The following processes were considered in the product stages Modules A1-A3 of the structural steel production:
- The provision of resources, additives and energy
- Transport of resources and additives to the production site
- Production process on site including energy, production of additives, disposal of production residues, consideration of related emissions, and recycling of production scrap.

Steel scrap is assumed to reach end of waste following a sorting and shredding process that takes place at demolition sites or waste processing facilities.

Module D Reuse and recycling of structural steel at End-of-Life.

3.3 Estimates and assumptions
For all Input- and Output materials the actual transport distances were applied or assumptions were taken.

3.4 Cut-off criteria
All information from the data collection process has been considered, covering all used and registered materials, thermal energy, electrical energy and diesel consumption. Measurement of on-site emissions took place and those emissions were considered. The specific emissions that are linked to the provision of thermal and electrical energy are considered in the specific processes.

Data for different sites were cross-checked with one another to identify potential data gaps. No processes, materials or emissions that are known to make a significant contribution to the environmental impact of the products studied have been omitted. On this basis, there is no evidence to suggest that input or outputs contributing more than 1% to the overall mass or energy of the system or that are environmentally significant have been omitted.

It can be assumed, that all excluded flows contribute less than 5% to the impact assessment categories. The manufacturing of required machinery and other infrastructure is not considered in the LCA.

3.5 Background data
As a general rule, specific data derived from specific production processes or average data derived from specific production processes shall be the first choice as a basis for calculating an EPD.
For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used /GaBi 6 2013/. The GaBi-database contains consistent and documented datasets which can viewed in the online GaBi-documentation /GaBi 6 2013D/.

3.6 Data quality
All relevant background datasets are taken from the GaBi 6 software database. The last revision of the used data sets took place less than 8 years ago. The study is based on high quality data.

3.7 Period under review
The considered primary data for the input and output of energy and materials were collected in the year 2011/12.

3.8 Allocation
The used allocation methodology for the coking processes and the crude iron production was developed by the Worldsteel Association and EUROFER in accordance with the /EN 15804/ /World Steel Association, EUROFER/. Unless justified the methodology is based on physical allocation and considers the changes in the input and output quantities that influence the production of by-products in steelmaking. The aim of the methodology is to separate the involved processes, functional or causal. Economic allocation was considered, as slag is considered a low-value co-product under /EN 15804/, however, as neither hot metal nor slag are tradable products upon leaving the BF, economic allocation would most likely be based on estimates. Similarly BOF slag must undergo processing before being used as a clinker or cement substitute. Worldsteel and EUROFER also highlights that companies purchasing and processing slag work on long-term contracts which do not follow regular market dynamics of supply and demand.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

Since only Module A1-A3 and Module D are declared in the EPD, only additional technical Information for Module D is given.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery</td>
<td>99</td>
<td>%</td>
</tr>
<tr>
<td>Recycling</td>
<td>88</td>
<td>%</td>
</tr>
<tr>
<td>Reuse</td>
<td>11</td>
<td>%</td>
</tr>
<tr>
<td>Loss</td>
<td>1</td>
<td>%</td>
</tr>
</tbody>
</table>
5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Use</td>
<td>Maintenance</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
<td>MND</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 tonne structural steel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1 - A3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential</td>
<td>kg CO₂-Eq.</td>
<td>1735</td>
<td>-969</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>kg CFC11-Eq.</td>
<td>1.3E-7</td>
<td>6.29E-9</td>
</tr>
<tr>
<td>Acidification potential of land and water</td>
<td>kg SO₂-Eq.</td>
<td>3.52</td>
<td>-1.32</td>
</tr>
<tr>
<td>Eutrophication potential</td>
<td>kg (PO₄)₃-Eq.</td>
<td>6.98E-1</td>
<td>-4.4E-1</td>
</tr>
<tr>
<td>Abiotic depletion potential for non fossil resources</td>
<td>kg Sb Eq.</td>
<td>2.85E-4</td>
<td>-1.1E-4</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources</td>
<td>MJ</td>
<td>17000</td>
<td>-7450</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - RESOURCE USE: 1 tonne structural steel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1 - A3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable primary energy as energy carrier</td>
<td>MJ</td>
<td>840</td>
<td>92.4</td>
</tr>
<tr>
<td>Renewable primary energy resources as material utilization</td>
<td>MJ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>MJ</td>
<td>840</td>
<td>92.4</td>
</tr>
<tr>
<td>Non renewable primary energy as energy carrier</td>
<td>MJ</td>
<td>17800</td>
<td>7210</td>
</tr>
<tr>
<td>Non renewable primary energy as material utilization</td>
<td>MJ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total use of non renewable primary energy resources</td>
<td>MJ</td>
<td>17800</td>
<td>7210</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>kg</td>
<td>618</td>
<td>375</td>
</tr>
<tr>
<td>Use of non renewable secondary fuels</td>
<td>MJ</td>
<td>1.75E-1</td>
<td>-5.29E-2</td>
</tr>
<tr>
<td>Use of net fresh water</td>
<td>m³</td>
<td>2.65</td>
<td>-0.275</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 tonne structural steel

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1 - A3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>2.75E-1</td>
<td>-2.24E-1</td>
</tr>
<tr>
<td>Non hazardous waste disposed</td>
<td>kg</td>
<td>51.9</td>
<td>26.3</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>3.15E-1</td>
<td>9.9E-2</td>
</tr>
<tr>
<td>Components for re-use</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exported electrical energy</td>
<td>MJ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exported thermal energy</td>
<td>MJ</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

6. LCA: Interpretation

This chapter contains an interpretation of the Life Cycle Impact Assessment categories with regards to the functional unit. It focuses on the dominant contributions during the production process.

For Ozon Creation Potential (POCP), production has an impact share of around 62% while for Eutrophication Potential (EP), the impact share is around 75%, with other categories between these two values. The outlier is ODP where the production stage has a share of almost 95%. For all the considered impact categories, besides ODP, a credit can be given for the end-of-life phase.

The main contributors to ODP are R11- (trichlorofluoromethane) and R114- (dichlorotetrafluoroethane), both of which are emissions from the pre-chains of power generation processes, in particular nuclear power generation where haloalkanes are used in cooling processes. ODP is therefore related to power consumption, especially the nuclear share of the grid mix. In the primary Blast Furnace with basic oxygen furnace (BF/BOF) Route fossil fuels, particularly hard coal, are used as the main energy carrier, whereas in the scrap-dominated electric arc furnace (EAF) route electrical energy is the main energy source. The lack of a credit for ODP is explained by the fact that the EAF process used for crediting in the end-of-life phase has high power consumption, including a proportion from nuclear power and this ultimately leads to an additional load in Module D.

The following picture shows the relative contribution of...
the Product stage according to PCR Part A /IBU 2011/ (Module A1-A3) and the Benefits and loads beyond the product system boundary (Module D).

Figure: Relative contribution Module A1-A3 separated, Module D

Module A2 is not visible due to the very low contributions to each impact assessment category.

The Global Warming Potential (GWP) is dominated by on-site emissions associated with steelmaking processes and the production of ancillary materials/pre-products. The overall share for these processes is about 42%.

POCP is also dominated by on-site emissions and the production of ancillary materials/pre-products with a share of about 45%.

The Acidification Potential (AP) is strongly dominated by the extraction and processing of raw materials and the generation of electricity, steam and heat from primary energy resources, including extraction, refining and transport, with module A1 having a total share of about 58%.

Similarly the EP is also strongly dominated by the extraction and processing of raw materials and the generation of electricity, steam and heat from primary energy resources, including extraction, refining and transport (Module A1) with a share of about 50%.

The Abiotic Depletion (elements) is dominated by the provision of auxiliary material e.g. dolomite. This is due to the fact, that the characterization factor in the CML-Methodology for dolomite is higher than metallic or mineral resources, for example iron ore.

The Abiotic Depletion Potential (fossil) is strongly dominated by the extraction and processing of raw materials and the generation of electricity, steam and heat from primary energy resources, including extraction, refining and transport (Module A1).

Total use of renewable primary energy carrier (PERT) and total use of non renewable primary energy (PENRT) are dominated by the extraction and processing of raw materials and the generation of electricity, steam and heat from primary energy resources, including extraction, refining and transport (Module A1).

For PERT module D shows a positive contribution of the Credit. This results in an additional burden from the “value of scrap”, comparable to the effect for ODP. This is caused by the different energy sources for the primary and secondary route. In the primary BF/BOF route fossil fuels, particularly hard coal, are used as the main energy carrier, whereas in the scrap-dominated EAF route electrical energy is the main energy source. The energy mix used in the secondary route contains a certain share of regenerative energy dependent on the grid mix. The lack of a credit for PERT is explained by the fact that the EAF process used for crediting in the end-of-life phase has high power consumption, including a proportion from regenerative power and this ultimately leads to an additional load in Module D. Overall the share of regenerative energy used is very low.

In general, the main contribution to primary energy in the BF/BOF route comes from the use of coal/cokc as an energy and carbon source. For the EAF route, the provision of electrical energy is the main contributor.

The most significant emissions for AP and EP in the BF/BOF-Route steel making process are NOx and SOx from the sinter process. For the EAF route the main contribution comes from the provision of electrical energy.

The most significant source of emissions contributing to POCP is the BOF steel making process (BF/BOF-Route). For EAF steelmaking the main contribution comes from the provision of electrical energy.

Secondary materials are used in both steel making processes, although the BF/BOF route is mostly primary while scrap is the input to the EAF route.

Radioactive waste comes from the provision of electrical energy, especially from the share of nuclear power in the grid mix. Non-hazardous wastes include overburden and tailings. Hazardous waste for deposition is produced in small amounts during production.

7. Requisite evidence

This EPD covers semi-finished structural steel of hot-rolled construction products. Further processing and fabrication depends on the intended application. Therefore further documentation is not applicable.

7.1 Weathering performance

The rusting rate of unalloyed steel is depending on the position of the component and the conditions of the surrounding atmosphere (corrosivity categories according to /EN ISO 12944-2/).

If required, the surfaces of fabricated structural components are usually protected with anticorrosion material in order to prevent any direct contact with the atmosphere. The weathering of this protection depends on the used protection system.

8. References
Institut Bauen und Umwelt 2011
Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles
for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013-04
www.bau-umwelt.de

PCR 2011, Part A
Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013
www.bau-umwelt.de

ISO 14025
DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804
EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

EN ISO 14001:2009-11, Environmental management systems - Requirements with guidance for use

EN 10025:2005-2, Hot rolled products of structural steels

EN 13501:2010-1, Fire classification of construction products and building elements

DIN 18800-7:2008, Welding of steel structures

ASTM A 36:2008, Standard specification for carbon structural steel

ASTM A 514:2009, Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding

ASTM A572:2012, Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel

ASTM A709:2011, Standard Specification for Structural Steel for Bridges

ASTM A913:2007, Standard specification for high-strength low-alloy shapes of structural quality, produced by quenching and self-tempering process (QST)

ASTM A992:2011, Standard specification for structural steel shapes

ASTM A1066:2011, Standard Specification for High-Strength Low-Alloy Structural Steel Plate Produced by Thermo-Mechanical Controlled Process (TMCP)

AWS D1.1:2010, Structural Welding Code – Steel

AISC 303-05, Code of Standard Practice for Steel Buildings and Bridges

EN 1993:2010-12/ Eurocode 3, Design of steel structures

EN 1994:2010-12 / Eurocode 4, Design of composite steel and concrete structures

ANSI/AISC 360-10, Specification for Structural Steel Buildings

GaBi 6 Documentation

World Steel Association, EUROFER, Bollen, J., Avery N., Millar, I. and Broadbent, C.: Methodology to determine the LCI of steel industry co-products, 2013
General Information

bauforumstahl e.V.

Published by

bauforumstahl e.V.
Sohnstraße 65
40237 Düsseldorf
Germany

Owner of the Annex

bauforumstahl e.V.
Sohnstraße 65
40237 Düsseldorf
Germany

Declaration number

EPD-BFS-20130094-IBE1-EN
EPD-BFS-20130094-IBE1-DE
EPD-BFS-20130173-IBG1-DE

This Annex is based on an Environmental Product Declaration:

Structural steel, 10-2013
Hot dip galvanized structural steel, 10-2013
(EPD verified independently)

Issue date

2013

Valid to

2018

Scope:

This environmental product declarations cover blank and hot-dip galvanized steel products rolled out to structural sections, merchant bars and heavy plates, intended for bolted, welded or otherwise connected constructions of buildings, bridges and other structures.

This environmental product declaration are valid for the following products:

- Plates produced by Dillinger Hütte and GTS Industries, Tata Steel on the Site Scunthorpe and Ilsenburger Grobblech GmbH.
- Sections produced by ArcelorMittal with the sites in Ostrava, Differdange, Dabrowa, Esch-Belval, Bergara, Hunedoara, Madrid, Olaberria, Zaragoza, Warszawa and Rodange, Tata Steel with the sites in Scunthorpe and Lackenby as well as Peiner Träger GmbH and Stahlwerk Thüringen GmbH. The owner of the declaration shall be liable for the underlying information and evidence.

LEED rating system and Version

LEED v4

Product

Product description

1 t of structural steel (sections and plates). It covers steel products of the grades S235 to S960 rolled out to structural sections, merchant bars and heavy plates.

Application

Structural steels are intended for bolted, welded or otherwise connected constructions of buildings, bridges and other structures, or in composite steel and concrete structures.

Examples:
- single storey buildings (industrial and storage halls, etc.)
- multistorey buildings (offices, residential buildings, shops, car parks, high rise, etc.)
- bridges (railway bridge, road bridge, pedestrian bridge, etc.)
- other structures (power plants, stadiums, convention centers, airports, stations, etc.)
MR Credit 4: Recycled Content

List of waste materials during construction

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total weight of the product</td>
<td>1000</td>
<td>kg</td>
</tr>
<tr>
<td>Postconsumer recycled content</td>
<td>62</td>
<td>%</td>
</tr>
<tr>
<td>Pre-consumer recycled content</td>
<td>8</td>
<td>%</td>
</tr>
</tbody>
</table>

MR Credit 4: Recycled Content

Relevant for: Every product.

Requirements:
Certified Report encouraged but not yet required: Indication of the recycled content distinct to Post- and Pre-consumer recycled content.

Target on building level:
10-20% recycled content based on total costs of the building.

Info:
MR Credit 4: 1-2 points
Following companies are represented with their products in this EPD:

Arceor Mittal

Dillinger Hütte GTS

Ilseburger Grobblech

Peiner Träger

Stahlwerk Thüringen

Tata

Publisher
Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany
Tel +49 (0)30 3087748- 0
Fax +49 (0)30 3087748- 29
Mail info@bau-umwelt.com
Web www.bau-umwelt.com

Programme holder
Institut Bauen und Umwelt e.V.
Panoramastr 1
10178 Berlin
Germany
Tel +49 (0)30 - 3087748- 0
Fax +49 (0)30 – 3087748 - 29
Mail info@bau-umwelt.com
Web www.bau-umwelt.com

Owner of the Declaration
bauforumstahl e.V.
Sohnstraße 65
40237 Düsseldorf
Germany
Tel +49(0)211.6707.828
Fax +49(0)211.6707.829
Mail zentrale@bauforumstahl.de
Web www.bauformstahl.de

Author of the Life Cycle Assessment
PE International AG
Hauptstraße 111 - 113
70771 Leinfelden-Echterdingen
Germany
Tel +49 711 341817-0
Fax +49 711 341817-25
Mail info@pe-international.com
Web www.pe-international.com