

m a lattice girde The top chord of the lattice girder shown in Figure 6.1 is later locations A R and C Verify the adequacy of a hot finished 14 Scope The top chord of the lattice guider shown in Figure 0.1 is lated oracle \$35512H steel for this chord grade S355J2H steel for this chord. The design aspects covered in this example are: Cross sectional resistance to combined Buckling resistance for combined bend 6.2 Design values of action Design concentrated force at A esign concentrated force at B sign concentrated force at C $F_{A,d} = .$ $F_{B,d} = 11$ Design moments and ford $F_{c,d} = 11$ state lysis: n force between A and C ending moment is st

Steel Building Design: Worked Examples - Hollow Sections

SCI (The Steel Construction Institute) is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions

Our service spans the following five areas:

Membership
Individual and corporate membership
Technical information
Courses
Publications
Online reference tools
Education
Codes and standards

Construction solutions

Sustainability Product development Research Engineering solutions

Communications technology Websites Communities

Design tools

Assessment

SCI assessed

The Steel Construction Institute, Silwood Park, Ascot, Berkshire, SL5 7QN. Telephone: +44 (0) 1344 636525 Fax: +44 (0) 1344 636570 Email: membership@steel-sci.com

For information on publications, telephone direct: +44 (0) 1344 636513 or Email: publications@steel-sci.com

For information on courses, telephone direct: +44 (0) 1344 636500 or Email: education@steel-sci.com

World Wide Web site: www.steel-sci.org 24 X 7 technical information: www.steelbiz.org

Steel Building Design: Worked Examples - Hollow Sections

In accordance with Eurocodes and the UK National Annexes

M E Brettle BEng (Hons)

Published by: The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN

Tel: 01344 636525 Fax: 01344 636570 © 2008 The Steel Construction Institute

Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of the Institute at a discount are not for resale by them.

Publication Number: SCI P374

ISBN 979-1-85942-161-1

British Library Cataloguing-in-Publication Data.

A catalogue record for this book is available from the British Library.

FOREWORD

The design of steel framed buildings in the UK has, since 1990, generally been in accordance with the British Standard BS 5950-1. However, that Standard is due to be withdrawn in March 2010; it will be replaced by the corresponding Parts of the Structural Eurocodes.

The Eurocodes are a set of structural design standards, developed by CEN (European Committee for Standardisation) over the last 30 years, to cover the design of all types of structures in steel, concrete, timber, masonry and aluminium. In the UK, they are published by BSI under the designations BS EN 1990 to BS EN 1999; each of these ten Eurocodes is published in several Parts and each Part is accompanied by a National Annex that implements the CEN document and adds certain UK-specific provisions.

This publication is one of a number of new design guides that are being produced by SCI to help designers become acquainted with the use of the Eurocodes for structural steel design. It provides a number of short examples, in the form of calculation sheets, illustrating the design of structural hollow sections for beams and columns in buildings.

All the examples were prepared by Miss M E Brettle and checked by Mr A S Malik of The Steel Construction Institute.

The work leading to this publication was funded by Tata Steel^{*} and their support is gratefully acknowledged.

^{*} This publication includes references to Corus, which is a former name of Tata Steel in Europe

iv

Contents

	Page No.
FOREWORD	iii
SUMMARY	vi
 INTRODUCTION Scope Basis of structural design Actions on structures Design of structural steelwork Non contradictory complementary information (NCCI) 	1 1 3 3 3
2 WORKED EXAMPLES Example 1 Tension member and tee connection Example 2 Pin-ended column Example 3 Simply supported laterally restrained beam Example 4 Laterally unrestrained beam Example 5 SHS subject to compression and bi-axial bending Example 6 Top chord in a lattice girder Example 7 Column in simple construction	5 6 18 22 32 36 45 55
3 BIBLIOGRAPHY	63

SUMMARY

This publication presents seven design examples to illustrate the use of Eurocode 3 for the design of structural hollow section members. The examples all use the Nationally Determined Parameter values recommended in the UK National Annexes.

A brief introductory section precedes the examples and a bibliography section is given at the end.

1 INTRODUCTION

1.1 Scope

This publication provides seven worked examples illustrating the design of members in buildings. All the members in these examples are hot finished structural hollow sections.

The examples illustrate the verification of the members in accordance with Eurocode 3, as implemented by the UK National Annexes to its various Parts. References are mainly to Part 1-1 (BS EN 1993-1-1) but some aspects are verified in accordance with Part 1-8 (BS EN 1993-1-8). Reference is also made to BS EN 1990. This publication should be used in conjunction with the Eurocodes themselves and other relevant SCI publications, in particular, *Steel building design: Introduction to the Eurocodes* (P361) and *Steel building design: Design data* (P363).

1.2 Basis of structural design

EN 1990 *Eurocode – Basis of structural design* sets out the principles that apply to structural design according to the Eurocodes. It is used in conjunction with the material-specific Eurocodes, notably, for the present publication, with EN 1993 *Eurocode 3 Design of steel structures*.

EN 1990 sets out a limit state design basis, gives rules for determining design values of actions and combinations of actions, and states the verifications that are required at ultimate and serviceability limit states.

1.2.1 National Choice

Each country in Europe may publish the main body of a Eurocode Part with an accompanying National Annex[†]. The principles and application rules given within the main body of a Eurocode Part do not differ between countries. However, within the main body there are some provisions for national choice to be exercised in the selection of design method and in the setting of values of parameters (collectively known as Nationally Determined Parameters, NDPs). Most notably, the partial factors applied to actions and to resistances may be set by the country. The exercise of these national choices and the setting of NDPs is given in the National Annex that accompanies the Eurocode Part.

The worked examples in this publication use the NDPs recommended in the UK National Annexes to the Eurocode Parts.

In general, the National Annex for the country where the structure is to be constructed should always be consulted in the design of a structure.

[†] Note that the main body of all the Eurocode Parts is issued initially by CEN as an 'EN' document - for example EN 1990. The main body is then issued in each country by the national standards organisation, for example, in UK by BSI, as BS EN 1990. The National Annex may be part of that document or may be issued separately.

1.2.2 Verification at ultimate limit state

For verification of persistent and transient situations at ULS, EN 1990 gives the alternative of two methods to determine the design value of the effects of combined actions. The design value may be determined from either expression (6.10) or from expressions (6.10a) and (6.10b).

The first method is to express the combination of actions as:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_{P} P + \gamma_{Q,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(6.10)

The second method is to use the less favourable value determined from the following two expressions:

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_P P + \gamma_{Q,1} \psi_{0,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(6.10a)

$$\sum_{j\geq 1} \xi_{j} \gamma_{G,j} G_{k,j} + \gamma_{P} P + \gamma_{Q,1} Q_{k,1} + \sum_{i\geq 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
(6.10b)

where:

- $G_{k,j}$ unfavourable permanent action
- *P* prestressing action
- $Q_{k,1}$ leading variable action
- $Q_{k,i}$ accompanying variable actions (i > 1)
- γ , ψ and ξ are partial, combination and reduction factors.

Table A1.2(B) in Annex A of EN 1990 presents the three expressions along with the recommended values for the partial and reduction factors. The recommended values for the combination factors are given in Table A1.1 of EN 1990.

The National Annex for the country in which the building is to be constructed should be consulted for guidance on which of the two methods to use and the values to use for the factors. The UK National Annex allows the use of either method and adopts the factor values recommended in the main text of EN 1990. (It is known that some countries only adopt the first method.)

The first method is the simplest to apply, as only one expression is used. However, it has been found that for the majority of situations, a lower design value of the effect of combined actions may be obtained by the use of the second method (expressions (6.10a) and (6.10b)) and, in the UK, expression (6.10b) will in most cases be the more onerous of these two.

The worked examples in this publication use the second method to determine the design value of actions for the ultimate limit state.

1.2.3 Verification at serviceability limit state

For verification at SLS, EN 1990 gives expressions for combinations of actions at reversible and irreversible limit states. The only SLS verifications considered in this publication relate to the deflection of beams. No SLS limits are given in the Eurocode and the UK National Annex only quotes suggested limits. These combinations and suggested limits are shown where relevant.

1.3 Actions on structures

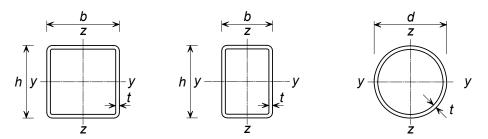
The various Parts of EN 1991 set out the characteristic values of all the different types of actions (i.e. imposed loads and imposed deformations) that structures may be subjected to. There is a distinction between permanent actions and variable actions.

In this publication, values for actions are simply stated, rather than taken explicitly from EN 1991; only vertical forces due to permanent actions (dead load) and variable actions (imposed loads) are considered.

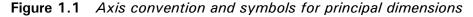
1.4 Design of structural steelwork

For the design of structural steelwork using structural hollow sections, the following information should be noted.

1.4.1 Steel material properties


The steel grade of the structural hollow sections considered in this publication is S355J2H in accordance with EN 10210-1 and S355JR for the Tee stubs in accordance with EN 10025-2.

1.4.2 Section properties and dimensions


The reference standard for the dimensions of hot finished hollow sections is *EN 10210 – Hot finished hollow sections of non-alloy and fine grain structural steel.* Section properties have been taken from publication P363 (see Bibliography).

1.4.3 Axis Notation

For structural members the axis notation used in the Eurocodes and this publication is:

Major axis y-yMinor axis z-zLongitudinal axis along the member x-x

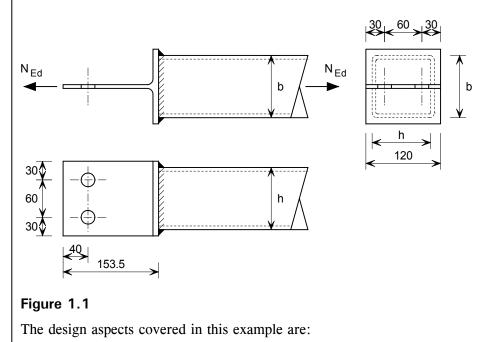
1.5 Non contradictory complementary information (NCCI)

The application rules in the Eurocodes do not cover every aspect of design and reference must in some cases be made to additional information (such as expressions to determine elastic critical buckling values), published elsewhere. Such information is referred to as non contradictory complementary information (NCCI). NCCI also provides additional guidance that will assist the designer

when designing a structure to the Eurocodes. The National Annexes may give references to NCCI documents.

Where an NCCI document has been used in this publication a reference is given. Examples of NCCI documents are those available on the Access Steel website: www.access-steel.com.

2 WORKED EXAMPLES


		Page
Example 1	Tension member and tee connection	6
Example 2	Pin-ended column	18
Example 3	Simply supported laterally restrained beam	22
Example 4	Laterally unrestrained beam	32
Example 5	SHS subject to combined compression and bi-axial bending	36
Example 6	Top chord in a lattice girder	45
Example 7	Column in simple construction	55

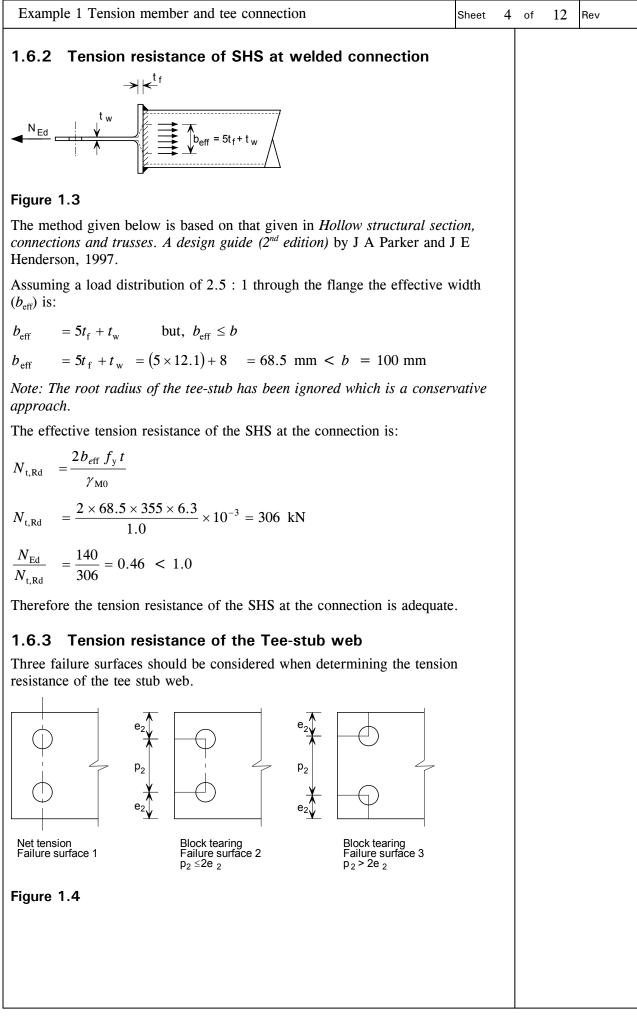
	Job No.	CDS 168		Sheet	1 of	12	Rev
	Job Title	Worked exar	nples to Euro	code 3 v	vith Ul	K NA	
Subject Example 1 – Tension member and tee connection							ion
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525							
Fax: (01344) 636570	Client	SCI	Made by]	MEB	Date	Feb 2	2009
CALCULATION SHEET		501	Checked by	ASM	Date	Jul 2	009
					Pofe	ranca	s are to

1 Tension member and tee connection

1.1 Scope

Verify the adequacy of the internal steelwork tension member and tee connection shown in Figure 1.1.

- Cross-sectional resistance to axial tension
- Tension resistance of the SHS at the connection
- Tension resistance of Tee-stub web
- Resistance of a group of bolts
- Resistance of fillet welds
- Selection of steel sub-grade for the SHS


1.2 Design force for ultimate limit state

Design tension force $N_{\rm Ed} = 140$ kN.

References are to BS EN 1993-1-1: 2005, including its National Annex, unless otherwise stated.

Example 1 Tension member and tee connection Sheet 2	of 2 Rev
1.3 Section properties	
1.3 Section properties	
Hot finished $100 \times 100 \times 6.3$ SHS in S355 steel	P363
Depth of section $h = 100 \text{ mm}$	
Width of section $b = 100 \text{ mm}$ Wall thickness $t = 6.3 \text{ mm}$	
Cross-sectional area $A = 23.20 \text{ cm}^2$	
For buildings that will be built in the UK the nominal values of the yield strength (f_y) and the ultimate strength (f_u) for structural steel should be those obtained from the product standard. Where a range is given the lowest nominal value should be used.	NA.2.4
For S355 steel	BS EN 10210-1
Yield strength ($t \le 16 \text{ mm}$) $f_y = R_{eH} = 355 \text{ N/mm}^2$	Table A.3
Ultimate tensile strength (3 mm $\le t \le 100$ mm) $f_u = R_m = 470$ N/mm ²	
$127 \times 152 \times 21$ UK Tee stub (UKT) cut from $305 \times 127 \times 42$ UKB in S355 steel	
Thickness of web $t_{\rm w} = 8.0 \text{ mm}$	P363
Thickness of flange $t_{\rm f} = 12.1 \text{ mm}$	
For S355 steel	BS EN 10025-2
Yield strength ($t \le 16 \text{ mm}$) $f_y = R_{eH} = 355 \text{ N/mm}^2$	Table 7
Ultimate tensile strength (3 mm $\le t \le 100$ mm) $f_u = R_m = 470$ N/mm ²	
1.4 Connection details	
Edge	
$e_2 \Phi$ $$	
p ₂ Direction of load transfer ►	
Figure 1.2	
M20 Class 8.8 bolts (Class A: Bearing type connection)	BS EN 1993-1-8
Bolt diameter $d = 20 \text{ mm}$ Hole diameter $d_0 = 22 \text{ mm}$	3.4.1(1)
Tensile stress area of the bolt $A_s = 245 \text{ mm}^2$	P363, Page D-303
Yield strength of bolt $f_{yb} = 640 \text{ N/mm}^2$	BS EN 1993-1-8
Ultimate tensile strength of bolt $f_{ub} = 800 \text{ N/mm}^2$	Table 3.1
Dimensions	
End distance $e_1 = 40 \text{ mm}$	
Edge distance $e_2 = 30 \text{ mm}$	
Spacing $p_2 = 60 \text{ mm}$	

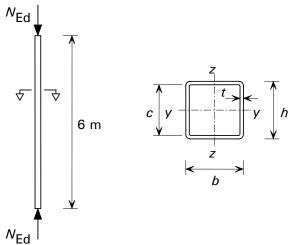
Example 1 Tension member and tee connection Sheet 3	of 12 Rev
Dimensional limits for a connection that is not exposed to the weather or other corrosive influences	BS EN 1993-1-8 Table 3.3
$1.2d_0 \le e_1$, $1.2 \times 22 = 26.4 \text{ mm} < 40 \text{ mm}$	
$1.2d_0 \le e_2$; 26.4 mm < 30 mm	
$2.4d_0 \le p_2 \le \min(14t_w \text{ or } 200 \text{ mm})$ 14t = 14 × 8 = 112.0 mm ≤ 200 mm	
$14t_{w} = 14 \times 8 = 112.0 \text{ mm} < 200 \text{ mm}$ 2.4d ₀ = 2.4 × 22 = 52.8 mm	
52.8 mm < 60.0 mm < 112.0 mm	
Therefore the dimensions of the connection are satisfactory.	
1.5 Partial factors for resistance	
1.5.1 Structural Steel	
$\gamma_{\rm M0} = 1.0$	NA.2.15
$\gamma_{M2} = 1.1$	
$\gamma_{M2} = 1.25$ (plates in bearing in bolted connections)	BS EN 1993-1-8 Table NA.1
1.5.2 Bolts	
$\gamma_{M2} = 1.25$	BS EN 1993-1-8
	Table NA.1
1.5.3 Welds	DC EN 1002 1 0
$\gamma_{M2} = 1.25$	BS EN 1993-1-8 Table NA.1
1.6 Cross-sectional resistance	
1.6.1 Tension resistance of SHS (whole cross section)	
Verify that:	
$\frac{N_{\rm Ed}}{N_{\rm t,Rd}} \le 1.0$	6.2.3(1)
$N_{\rm t,Rd}$	
The design tension resistance of the cross section is:	
$N_{\mathrm{t,Rd}} = N_{\mathrm{pl,Rd}} = rac{A imes f_{\mathrm{y}}}{\gamma_{\mathrm{M0}}}$	
$N_{t,Rd} = \frac{2320 \times 355}{1.0} \times 10^{-3} = 824 \text{ kN}$	
$\frac{N_{\rm Ed}}{N_{\rm t,Rd}} = \frac{140}{824} = 0.17 < 1.0$	6.2.3(1)
Therefore the tension resistance of the SHS cross section is adequate.	

Net tension - Failure surface 16.2.3(1)Verify that: $\frac{N_{Ed}}{N_{1,Rd}} \leq 1.0$ 6.2.3(2)For a cross section with holes, the design tension resistance is taken as the smaller of $N_{p,Rad}$ and $N_{u,Rd}$:6.2.3(2)a) $N_{p,Rad} = \frac{4 \times f_y}{T_{MO}}$ (6.6) $A = A_{web} = 120 f_w = 120 \times 8 = 960 \text{ mm}^2$ (6.6) $N_{p,Rad} = \frac{960 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$ (6.7)b) $N_{u,Rad} = \frac{0.9 \times 4_{met} \times f_u}{7_{M2}}$ (6.7) $A_{rest} = A_{web} - 2d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ (6.7) $A_{rest} = A_{web} - 2d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ (6.2.2.2) $N_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ (6.7)Since $N_{u,Rd} = N_{u,Rd} = 234 \text{ kN}$ (6.2.3(1))Therefore, the tension resistance of the web is:(6.2.3(1)) $N_{u,Rd} = \frac{140}{234} = 0.60 < 1.0$ (6.2.3(1))Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate.(6.2.3(1))Block tearing 1 Failure surface 2for 3 should be considered. $n \text{ this example } p_2 = 2e_2$; therefore failure surface 2 is considered.(6.2.3(1)) $n \text{ this example } p_2 = 2e_2$; therefore failure surface 2 is considered. $n \text{ this example } p_2 = 2e_2$; therefore failure surface 2 is considered. $n \text{ this example } p_2 = 2e_2$; therefore failure surface 2 is considered. $n \text{ this example } p_2 = 2e_2$; therefore failure surface 2 is considered. $n \text{ this example } p_2 = 2e_2$; therefore failure surface 2 is considered. $n \text{ this example } p_2 = 2e_3$; therefore failure surface 2 is considered.	Example 1 Tension member and tee connection Sheet 5	of 12 Rev
Verify that: $\frac{N_{Ed}}{N_{LBd}} \leq 1.0$ For a cross section with holes, the design tension resistance is taken as the smaller of $N_{\mu_{LBd}} = \frac{4 \times f_y}{N_{MO}}$ (6.6) $A = -4_{web} - 120 r_w = 120 \times 8 = 960 \text{ mm}^2$ $N_{\mu_{LBd}} = \frac{900 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$ (6.7) $A_{met} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = -4_{web} - 2 d_0 r_w = -234 \text{ kN}$ $B_{nLRd} = -4_{ue} - 2 B_{nLR}$ $A_{net} = -4_{ue} - 2 B_{nLR}$ $A_{net} = -2 A_{net} \text{ most onerous case of failure surface 2 or 3 should be considered.$ $A_{net} = -4_{net} - 4_{net} -$	Net tension – Failure surface 1	6.2.3(1)
For a cross section with holes, the design tension resistance is taken as the smaller of $N_{p1,Rd}$ and $N_{u,Rd}$: a) $N_{p1,Rd} = \frac{4 \times f_y}{\gamma_{M0}}$ (6.6) $A = A_{web} = 120t_w = 120 \times 8 = 960 \text{ mm}^2$ $N_{p1,Rd} = \frac{960 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$ (6.7) $A_{net} = A_{web} - 2 d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $N_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,Rd} = N_{u,Rd} = 234 \text{ kN}$ (6.2.2.2 $N_{u,Rd} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing the most onerous case of failure surface 2 or 3 should be considered. $\sqrt{Nen subject to shear}$ $\sqrt{Nen subject to shear}$ Figure 1.5 Verify that:		
For a cross section with holes, the design tension resistance is taken as the smaller of $N_{p1,Rd}$ and $N_{u,Rd}$: a) $N_{p1,Rd} = \frac{4 \times f_y}{\gamma_{M0}}$ (6.6) $A = A_{web} = 120t_w = 120 \times 8 = 960 \text{ mm}^2$ $N_{p1,Rd} = \frac{960 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$ (6.7) $A_{net} = A_{web} - 2 d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $N_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,Rd} = N_{u,Rd} = 234 \text{ kN}$ (6.2.2.2 $N_{u,Rd} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing the most onerous case of failure surface 2 or 3 should be considered. $\sqrt{Nen subject to shear}$ $\sqrt{Nen subject to shear}$ Figure 1.5 Verify that:	$\frac{N_{\rm Ed}}{N_{\rm t,Rd}} \le 1.0$	
$A = A_{web} = 120t_{w} = 120 \times 8 = 960 \text{ mm}^{2}$ $N_{pl,Rd} = \frac{960 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$ b) $N_{u,Rd} = \frac{0.9 \times A_{net} \times f_{u}}{\gamma_{M2}}$ $A_{net} = A_{web} - 2d_{0}t_{w} = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^{2}$ $A_{net} = A_{web} - 2d_{0}t_{w} = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^{2}$ $B_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,Rd} = N_{u,Rd} = 234 \text{ kN}$ $\frac{N_{Ed}}{N_{u,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 is considered. $\frac{\sqrt{N_{ex}} \times N_{pl,Rd}}{\sqrt{N_{u,Rd}} = \frac{140}{234} = 222; \text{ therefore failure surface 2 is considered.}$ Figure 1.5 Verify that:	For a cross section with holes, the design tension resistance is taken as the	6.2.3(2)
$N_{pl,Rd} = \frac{960 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$ b) $N_{u,Rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}}$ (6.7) $A_{net} = A_{web} - 2d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $A_{net} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,Rd} = N_{u,Rd} = 234 \text{ kN}$ $\frac{N_{u,Rd}}{N_{u,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing the most onerous case of failure surface 2 or 3 should be considered. $A_{reas subject to shear}$ $A_{rea subject to shear}$ Figure 1.5 Verify tha:	a) $N_{\rm pl,Rd} = \frac{A \times f_y}{\gamma_{\rm M0}}$	(6.6)
b) $N_{u,Rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}}$ $A_{net} = A_{web} - 2d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $N_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,Rd} < N_{pLRd}$ the tension resistance of the web is: $N_{t,Rd} = N_{u,Rd} = 234 \text{ kN}$ $\frac{N_{Ed}}{N_{t,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. $\sqrt[4]{P_{u,Rd}} = \frac{1}{2} \frac{1}{\sqrt{1-2}} \frac{1}{\sqrt{1-2}} \frac{\sqrt{1-2}}{\sqrt{1-2}} $	$A = A_{web} = 120t_w = 120 \times 8 = 960 \text{ mm}^2$	
$A_{\text{net}} = A_{\text{web}} - 2d_0 t_w = 960 - (2 \times 22 \times 8) = 608 \text{ mm}^2$ $N_{u,\text{Rd}} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,\text{Rd}} < N_{p,\text{Rd}}$ the tension resistance of the web is: $N_{t,\text{Rd}} = N_{u,\text{Rd}} = 234 \text{ kN}$ $\frac{N_{\text{Ed}}}{N_{t,\text{Rd}}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. $\frac{\sqrt{\text{Vea subject to shear}}}{\sqrt{\text{Vea subject to shear}}}$ Figure 1.5 Verify that: N	$N_{\rm pl, Rd} = \frac{960 \times 355}{1.0} \times 10^{-3} = 341 \text{ kN}$	
$N_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$ Since $N_{u,Rd} < N_{pl,Rd}$ the tension resistance of the web is: $N_{t,Rd} = N_{u,Rd} = 234 \text{ kN}$ $\frac{N_{Ed}}{N_{t,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. $\sqrt[4]{P_{u,Rd}} = \frac{1}{2} \frac{1}{2} \frac{1}{100} \frac{1}{10$	b) $N_{u, Rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}}$	(6.7)
Since $N_{u,Rd} < N_{p_{1,Rd}}$ the tension resistance of the web is: $N_{u,Rd} = N_{u,Rd} = 234 \text{ kN}$ $\frac{N_{Ed}}{N_{u,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered. $\sqrt[4]{P_2}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_1}$ $\sqrt[4]{P_2}$ $\sqrt[4]{P_1}$ $\sqrt[4]$		6.2.2.2
$N_{t,Rd} = N_{u,Rd} = 234 \text{ kN}$ $\frac{N_{Ed}}{N_{t,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered. $\frac{\sqrt{Area subject to shear}}{\sqrt{Area subject to shear}}$ Figure 1.5 Verify that:	$N_{u,Rd} = \frac{0.9 \times 608 \times 470}{1.1} \times 10^{-3} = 234 \text{ kN}$	
$\frac{N_{Ed}}{N_{t,Rd}} = \frac{140}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered. $\frac{\sqrt{4rea \ subject \ to \ shear}}{\sqrt{4rea \ subject \ to \ shear}}$ Figure 1.5 Verify that:	Since $N_{u.Rd} < N_{pl.Rd}$ the tension resistance of the web is:	
$\frac{1}{N_{t,Rd}} = \frac{1}{234} = 0.60 < 1.0$ Therefore, the tension resistance of the tee-stub along failure surface 1 is adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered. $\stackrel{Area subject to shear}{} $	$N_{\rm t,Rd}$ = $N_{\rm u,Rd}$ = 234 kN	
adequate. Block tearing - Failure surface 2 For block tearing the most onerous case of failure surface 2 or 3 should be considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered. $A^{\text{rea subject to shear}}$ e_2 e_2 e_1 $A^{\text{rea subject to shear}}$ Figure 1.5 Verify that:	$\frac{N_{\rm Ed}}{N_{\rm t,Rd}} = \frac{140}{234} = 0.60 < 1.0$	6.2.3(1)
For block tearing the most onerous case of failure surface 2 or 3 should be considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered.		
considered. In this example $p_2 = 2e_2$; therefore failure surface 2 is considered. Area subject to shear e_2 e_2 e_1 Area subject to shear Figure 1.5 Verify that:	Block tearing - Failure surface 2	
$\begin{array}{c} e_2 \\ p_2 \\ e_2 \\ e_2 \\ e_1 \\ frequent Area subject to shear \\ \end{array}$ Figure 1.5 Verify that:		
Figure 1.5 Verify that:	e ₂ P ₂ e ₂ e ₂ Area subject to tension	
Verify that:		
N	-	
$\frac{V_{\rm Ed}}{V_{\rm Eff,1,Rd}} \le 1.0$	$\frac{N_{\rm Ed}}{V_{\rm Eff,1,Rd}} \leq 1.0$	

Example 1 Tension member and tee connection	Sheet	6	of	12	Rev
For a symmetric bolt group subject to concentric loading, the design bloc tearing resistance $(V_{\rm Eff,1,Rd})$ is determined from:	k				
$V_{\rm Eff,1,Rd} = \frac{f_{\rm u}A_{\rm nt}}{\gamma_{\rm M2}} + \left(1/\sqrt{3}\right)\frac{f_{\rm y}A_{\rm nv}}{\gamma_{\rm M0}}$				EN 1 .2(2)	993-1-8
where:					
$A_{\rm nt}$ is the net area subject to tension					
$A_{\rm nv}$ is the net area subject to shear					
$A_{\rm nt} = (p_2 - d_0)t_{\rm w} = (60 - 22) \times 8 = 304 \text{ mm}^2$					
$A_{\rm nv} = 2\left(e_1 - \frac{d_0}{2}\right)t_{\rm w} = 2 \times \left(40 - \frac{22}{2}\right) \times 8 = 464 \text{ mm}^2$					
$V_{\rm Eff,1,Rd} = \left[\frac{470 \times 304}{1.1} + \left(\frac{1}{\sqrt{3}}\right) \times \frac{355 \times 464}{1.0}\right] \times 10^{-3} = 225 \text{ kN}$					
$\frac{N_{\rm Ed}}{V_{\rm Eff,1,Rd}} = \frac{140}{225} = 0.62 < 1.0$					
Therefore, the block tearing resistance of the tee-stub along failure surfac adequate.	e 2 is				
Therefore, the tension resistance of the tee-stub web is adequate.					
1.7 Resistance of the bolts $\frac{N_{\rm Ed}}{E} \le 1.0$			Sect BS I		.7 are to 993-1-8,
$\frac{\overline{F_{\text{Rd, joint}}}}{F_{\text{rd, joint}}} \le 1.0$ $F_{\text{rd, joint}} \text{ is the resistance of the group of bolts.}$					Annex
1.7.1 Design bearing resistance of a single bolt					
$F_{\rm b,Rd} = \frac{k_1 \alpha_{\rm b} f_{\rm u} dt}{\gamma_{\rm M2}}$			Tabl	e 3.4	Ļ
$\alpha_{\rm b}$ is the smaller of $\alpha_{\rm d}$, $\frac{f_{\rm ub}}{f_u}$ and 1.0.					
For end bolts					
$\alpha_{\rm d} = \frac{e_1}{3d_0} = \frac{40}{3 \times 22} = 0.61$					
$\frac{f_{\rm ub}}{f_{\rm u}} = \frac{800}{470} = 1.70$			Shee	et 2	
Therefore, $\alpha_{\rm b} = \alpha_{\rm d} = 0.61$					

Example 1 Tension member and tee connection	Sheet 7	of 12	Rev
For edge bolts			
k_1 is the smaller of $\frac{2.8e_2}{d_0} - 1.7$ or 2.5			
$\frac{2.8e_2}{d_0} - 1.7 = \frac{2.8 \times 30}{22} - 1.7 = 2.12$			
Therefore, $k_1 = 2.12$			
$\gamma_{M2} = 1.25$ (For plates in bearing)		Sheet 3	
$F_{b,Rd} = \frac{k_1 \alpha_b f_u dt_w}{\gamma_{M2}} = \frac{2.12 \times 0.61 \times 470 \times 20 \times 8}{1.25} \times 10^{-3} = 78 \text{ kN}$			
As the lap joint has a single row of bolts, $F_{b,Rd}$ should also be limited to:			
$F_{b,Rd} \leq \frac{1.5f_{u}dt_{w}}{\gamma_{M2}} = \frac{1.5 \times 470 \times 20 \times 8}{1.25} \times 10^{-3} = 90 \text{ kN}$		3.6.1(10))
78 kN < 90 kN			
Therefore, the design bearing resistance of a single bolt is:			
$F_{\rm b,Rd}$ = 78 kN			
1.7.2 Design shear resistance of a single bolt			
$F_{\rm v,Rd} = \frac{\alpha_{\rm v} f_{\rm ub} A}{\gamma_{\rm M2}}$		Table 3.4	1
For Class 8.8 bolts, assuming that the shear plane passes through the threat portion of the bolt. $\alpha_v = 0.6$.	aded		
$A = A_s = 245 \text{ mm}^2$ (tensile stress area of the bolt)			
Therefore, the design shear resistance of one bolt in single shear is:			
$F_{\rm v,Rd} = \frac{0.6 \times 800 \times 245}{1.25} \times 10^{-3} = 94 \text{ kN}$			
1.7.3 Design resistance of a group of bolts			
For a single bolt $F_{b,Rd} = 78 \text{ kN} < F_{v,Rd} = 94 \text{ kN}$			
Therefore the resistance of the group of 2 bolts is:		3.7(1)	
$F_{\rm Rd,joint} = 2 \times 78 = 156 \rm kN$			
Design shear force applied to the joint is: $F_{v,Ed} = N_{Ed} = 140 \text{ kN}$			
$\frac{N_{\rm Ed}}{F_{\rm Rd,joint}} = \frac{140}{156} = 0.90 < 1.0$			
Therefore two M20 grade 8.8 bolts are satisfactory.			
In this example the bearing of bolts on the tee stub web is critical.			
Note: If the gusset plate is thinner than the web of the T-stub this would be critical.	ę		

Example 1 Tension member and tee connection	Sheet	8 o	f 12	Rev	
1.8 Fillet weld design			eference ection 1	es in .8 are to	
The simplified method for calculating the design resistance of the fillet we used here.	B ir	BS EN 1993-1-8, including its National Annex			
Consider a fillet weld with a 6 mm leg length (i.e. throat $a = 4.2$ mm).					
Verify that:		4	5.3.3(1)	
$F_{\rm w,Ed} \leq F_{\rm w,Rd}$					
The design weld resistance per unit length,		4	.5.3.3(2	<i>(</i>)	
$F_{\rm w,Rd} = f_{\rm vw,d}a$					
where:					
$f_{\rm vw,d} = \frac{f_{\rm u} / \sqrt{3}}{\beta_{\rm w} \gamma_{\rm M2}}$		4	.5.3.3(3		
For S355 steel,					
$\beta_{\rm w} = 0.9$		T	able 4.1	l	
$f_{\rm u}$ relates to the weaker part jointed, therefore:		4	5.3.2(6)	
$f_{\rm u} = 470 \ {\rm N/mm^2}$					
$\gamma_{M2} = 1.25$		s	heet 3		
Hence $f_{\rm vw,d} = \frac{470 / \sqrt{3}}{0.9 \times 1.25} = 241 \text{ N/mm}^2$		4	.5.3.3(3		
Therefore, the design weld resistance per mm is:		4	.5.3.3(2	<i>.</i>)	
$F_{\rm w,Rd} = 241 \times 4.2 \times 10^{-3} = 1.01 \text{ kN/mm}$					
Consider the length b_{eff} of the tee-stub. The design force is transferred or length b_{eff} on two walls of the SHS. Therefore, the effective weld length		S	or b_{eff} section 1 is example	.6.2 of	
$l = 2b_{\text{eff}} = 2 \times 68.5 = 137 \text{ mm}$		u		ipic	
The design weld force per mm is:					
$F_{\rm w,Ed} = \frac{N_{\rm Ed}}{l} = \frac{140}{137} = 1.02 \text{ kN/mm}$					
$\frac{F_{\rm w,Ed}}{F_{\rm w,Rd}} = \frac{1.01}{1.02} = 0.99$		4	.5.3.3(1)	
Therefore the design resistance of the weld with a leg length of 6 mm and thickness of 4.2 mm is satisfactory. Provide this fillet weld all round the		t			
However, it should be noted that a larger value for the design resistance of fillet weld is obtained when the more rigorous directional method is used method has been used to determine the resistance values given in SCI P30 Section 1.10.3 of this example).	. This				


Example 1 Tension member and tee connection	Sheet	9	of	12	Rev
1.9 Selection of steel sub-grade					
Here only the steel sub-grade for the SHS is determined, in practice the sub-grade for the UKT should also be determined.					
BS EN 1993-1-10 presents a table with limiting thicknesses for different s sub-grades with different stress levels for a range of reference temperature Six variables are used in the expression given to determine the required retemperature that should be considered. The UK National Annex presents modified table for a single stress level, with an adjustment to reference temperature for actual stress level.	es. eferend	ce			
The UK National Annex also refers to non contradictory complimentary information (NCCI) given in Published Document PD 6695-1-10 for furth guidance.	ler				
The procedure for determining the maximum thickness values for steelworbuildings is given in 2.2 of PD 6695-1-10, with reference to Tables 2 and that document. That guidance is used in this example.					
1.9.1 Design combination and value of actions					
According to BS EN 1993-1-10 the design condition should consider the following combination of actions					
$A[T_{\rm Ed}] + \sum G_{\rm k} + \psi_1 Q_{\rm k1} + \psi_{2,i} Q_{\rm ki}$			BS] (2.1		993-1-10
in which $T_{\rm Ed}$ is the reference temperature. For buildings the value of $T_{\rm Ed}$ internal steelwork is given by the UK National Annex to BS EN 1993-1-1 -5° C.					
Here, for the above combination of actions, the design tension force is:					
$N_{\rm Ed}$ = 95 kN					
Dimensions of weld					
Attachment 'length of weld'6 mm (weld leg length)Attachment 'width of weld'100 mm (width of SHS)					
Note: The weld dimensions are as defined in Table NA.1; 'length of weld measured in the direction of the tensile stress and 'width of weld' is measured transverse to the direction of the tensile stress.					
Classify detail					
The detail should be classified in terms of ΔT_{RD} following the guidance gi NA.2.1.1.2 of BS EN 1993-1-10.	ven in	L	PD 2.2i		-1-10
The dimension of the welded attachment considered here fall outside of the given in Table NA.1 as the length is not applicable. Therefore,	e limi	ts		EN 9 le NA	93-1-10 A.1
$\Delta T_{\rm RD} = 0^{\circ} \rm C$			NA.	2.1.	1.2
For internal steelwork and $\Delta T_{RD} = 0^{\circ}C$ the detail type is: 'Welded – moderate'			PD Tab		-1-10

Example 1 Tension member and tee connection	Sheet	10	of	12	Rev
Tensile stress level					
The tensile stress in the SHS may be considered to be:					
$\sigma_{\rm Ed} = \frac{N_{\rm Ed}}{2b_{\rm eff}} = \frac{95 \times 10^3}{2 \times 68.5 \times 6.3} = 110 \text{ N/mm}^2$					
The tensile stress level at the detail is:					1-10
$\frac{\sigma_{\rm Ed}}{f_{\rm y}(t)} = \frac{110}{355} = 0.31$			2.2ii)	
Initial column in table					
For a 'welded – moderate' detail, the stress level (0.31) is between that for comb 6 and that for comb 7. Noting that 2.2vi) of PD 6695-1-10 allows interpolation between adjacent columns for 'borderline cases', take the in column as comb 6 and interpolate to the right once the final column has decided.	itial		PD 6 Table		-1-10
Adjustment to table column selection					
Verify whether the initial table column selection needs to be altered for the criteria given in Note A to Table 2.	he				
Charpy test temperature					
NA.2.1.1.4 of the UK National Annex to BS EN 1993-1-10 give adjustm the reference temperature based on the difference between the Charpy test temperature and the minimum steel temperature. These adjustments have accounted for in the Tables given in PD 6695-1-10. Thus no alteration is required.	st e been	,			
Gross stress concentration factor ($arDelta T_{Rg}$)					
It is considered that there will be no gross stress concentration as the tens stress level has been determined using an effective width acting on only to of the SHS. Therefore the criterion is met, thus		es			
$\Delta T_{\rm Rg} = 0$					
Radiation loss (ΔT_r)					
There is no radiation loss for the joint considered here. Therefore the cr met, thus $\Delta T_r = 0$	iterion	is			
Strain rate (ΔT_{ϵ})					
Here the strain rate is not greater than to the reference strain rate given i	n				
BS EN 1993-1-5 ($\dot{\varepsilon} = 4 \times 10^{-4}$ /sec Therefore the criterion is met, thus					
$\Delta T_{\varepsilon} = 0$					
Cold forming ($\Delta T_{\varepsilon_{cf}}$)					
The section considered here is hot finished, therefore no cold forming is and the criterion is met, thus $T_{\rm eff} = 0$	presen	t			
$\Delta T_{\varepsilon_{\rm cf}} = 0$					

Example 1 Tension member and tee connection s	heet	11	of	12	Rev
As all four criteria are met, the table column selection does not need to be adjusted.	;				
Therefore for S355, 'welded – moderate' and interpolating between comb	6		PD 6	695-	1-10
$\left(\frac{\sigma_{\rm Ed}}{f_{\rm y}(t)}=0.3\right)$ and comb 7 $\left(\frac{\sigma_{\rm Ed}}{f_{\rm y}(t)}\geq0.5\right)$, the limiting steel thickness are	e:	,	Table	e 2	
J0 54.5 mm J2 81.8 mm					
6.3mm < 54.5 mm < 81.8 mm					
Therefore, an appropriate steel grade for the SHS is S355J0.					
1.10 Blue Book approach			0		rences in .10 are
The bolt and welding resistances calculated in Sections 1.7 and 1.8 of this example could have been obtained from SCI publication P363. However, does not contain values for the tension resistance of the cross section. The the verifications given in Section 1.6 of this example still need to be carried	P363 erefore		to P3	363 ı	stated.
1.10.1 Design value of axial tension					
$N_{\rm Ed} = 140 \ \rm kN$					
1.10.2 Resistance of the bolts					
Bearing resistance					
The design bearing resistance of a single M20 non-preloaded class 8.8 bol S355 steel 8 mm thick ply, with $e_1 = 40$ mm and $e_2 = 30$ mm is:	t in				
$F_{\rm b,Rd}$ = 77.2 kN]	Page	D-3	03
Shear resistance					
The design shear resistance of a single M20 non-preloaded class 8.8 bolt v single shear plane is:	with a		Page	D-3	03
$F_{\rm v,Rd} = 94.1 \ \rm kN$			1 450	20	00
Resistance of a group of bolts					
$F_{\rm b,Rd}$ < $F_{\rm v,Rd}$					
Therefore, the design resistance of the joint is:					
$F_{\rm Rd,joint} = 2F_{\rm b,Rd} = 2 \times 77.2 = 154.4 \rm kN$					
$\frac{N_{\rm Ed}}{N_{\rm Rd,joint}} = \frac{140}{154.4} = 0.91 < 1.0$					
Therefore the resistance of the bolts is adequate.					

Example 1 Tension member and tee connection	Sheet	12	of	12	Rev	
1.10.3 Resistance of the weld						
For a fillet weld with a throat thickness of $a = 4.2$ mm (leg length of 6 m). The design transverse resistance of the fillet weld is:	mm).					
$F_{\rm w,T,Rd} = 1.24 \text{ kN/mm}$			Page	e D-3	816	
Note: This resistance value is greater than that determined in Section 1.8 example as the Blue Book uses the directional method to determine the tr resistance of the weld compared with the simplified method used in Section	ansvers	se				
The weld length $l = 137 \text{ mm}$			Shee	et 8		
Therefore, the design weld force is:						
$F_{\rm w,Ed} = \frac{N_{\rm Ed}}{l} = \frac{140}{137} = 1.02 \text{ kN/mm}$						
$\frac{F_{\rm w,Ed}}{F_{\rm w,t,Rd}} = \frac{1.02}{1.24} = 0.82 < 1.0$						
Therefore, the resistance of the fillet weld is adequate.						

				1		1		
	Job No.	CDS 168		Sheet 1	of 4	Rev		
Job Title Worked examples to Eurocode 3 v					ith UK NA			
Subject Example 2 – Pin-ended column								
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525								
Fax: (01344) 636570	HFFT SCI Made by MEB				Date Feb	2009		
CALCULATION SHEET					Date Jul 2009			
2 Pin-ended colur	nn				Reference BS EN 19 2005 inc	993-1-1:		
2.1 Scope					2005, including its National			
The pin-ended column shown in Figure 2.1 is subject to compression. Verify the adequacy of a hot finished $200 \times 200 \times 6.3$ SHS in S355 steel.				Annex, un otherwise				

Figure 2.1

The design aspects covered in this example are:

- Cross section classification
- Cross-sectional resistance to axial compression
- Flexural buckling resistance.

2.2 Design force for ultimate limit state

Design compression force $N_{\rm Ed} = 920 \text{ kN}$

2.3 Section properties

Hot finished $200\times200\times6.3$ SHS in S355 steel

Depth of section	h	= 200 mm
Width of section	b	= 200 mm
Wall thickness	t	= 6.3 mm
Radius of gyration	i	= 7.89 cm
Cross sectional area	A	$= 48.40 \text{ cm}^2$

P363

Example 2 pin ended column	Sheet 2	of 4	Rev
			10 0
For buildings that will be built in the UK the nominal values of the yield (f_v) and the ultimate strength (f_u) for structural steel should be those obtain	-	NA.2.4	
the product standard. Where a range is given the lowest nominal value s			
used.			
For S355 steel and $t \le 16$ mm		BS EN 1	
Yield strength $f_y = R_{eH} = 355 \text{ N/mm}^2$		Table A.	3
2.4 Cross section classification			
$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$		Table 5.2	2
Internal compression parts			
$c = h - 3t = 200 - 3 \times 6.3 = 181.1 \text{ mm}$			
$\frac{c}{t} = \frac{181.1}{6.3} = 28.75$			
		Table 5.2)
The limiting value for Class 1 is $\frac{c}{t} \le 33\varepsilon = 33 \times 0.81 = 26.73$		14010 5.2	2
The limiting value for Class 2 is $\frac{c}{t} \le 38\varepsilon = 38 \times 0.81 = 30.78$			
26.73 < 28.75 < 30.78 therefore the internal compression parts are Cla	uss 2.		
As $b = h$ only one check is required; therefore the cross section is Class	2.		
2.5 Partial factors for resistance			
$\gamma_{\rm M0} = 1.0$		NA.2.15	
$\gamma_{M1} = 1.0$			
2.6 Cross-sectional resistance			
2.6.1 Compression resistance			
Verify that		6.2.4(1)	
$\frac{N_{\rm Ed}}{N_{\rm c,Rd}} \le 1.0$		Eq (6.9)	
The design resistance of the cross section to compression is:			
$N_{\rm c,Rd} = \frac{A \times f_y}{M_{\rm c,Rd}}$ (For Class 1, 2 and 3 cross sections)			
$N_{\rm c,Rd} = \frac{\gamma}{\gamma_{\rm M0}}$ (For Class 1, 2 and 3 cross sections)		6.2.4(2) Eq (6.10)
$N_{\rm c,Rd} = \frac{4840 \times 355}{1.0} \times 10^{-3} = 1718 \text{ kN}$			
1.0			

Example 2 pin ended column	Sheet 3	of 4	Rev
$\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{920}{1718} = 0.54 < 1.0$ Therefore the compressive resistance of the SHS cross section is adequat	e.	6.2.4(1) Eq (6.9)	
2.7 Flexural buckling resistance			
Verify that:		6.3.1.1(1 Eq (6.46	
$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} \le 1.0$		-1 (0000	,
The design buckling resistance is determined from:			
$N_{\rm b,Rd} = \frac{\chi A f_y}{\gamma_{\rm M1}}$ (For Class 1 and 2 cross sections)		6.3.1.1(3 Eq (6.47	
χ is the reduction factor for the relevant buckling mode and is determine	d from:	6.3.1.2(1	l)
$\chi = \frac{1}{(\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)})}$ but $\chi \le 1.0$		Eq (6.49)
Where:			
$\Phi = 0.5 \left(1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right)$			
For hot finished SHS in S355 steel, use buckling curve ' a '		Table 6. Table 6.	
For buckling curve 'a' the imperfection factor $\alpha = 0.21$ For flexural buckling the slenderness is determined from:			1
$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right)\left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross sections)		6.3.1.3(1 Eq (6.50	
$\lambda_1 = 93.9\varepsilon = 93.9 \times 0.81 = 76.1$			
The buckling length about both axes is $L_{cr} = L = 6000 \text{ mm}$			
As the cross section is square $\overline{\lambda}_y = \overline{\lambda}_z$			
$\overline{\lambda} = \left(\frac{L_{\rm cr}}{i}\right) \left(\frac{1}{\lambda_1}\right) = \left(\frac{6000}{78.9}\right) \left(\frac{1}{76.1}\right) = 1.00$		Eq (6.50)
$\Phi = 0.5 \left(1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right) = 0.5 \times \left(1 + 0.21 \times (1.0 - 0.2) + 1.0^2 \right) = 1$	1.08	6.3.1.2(1	1)
$\chi = \frac{1}{(\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)})} = \frac{1}{1.08 + \sqrt{(1.08^2 - 1.0^2)}} = 0.67$		Eq (6.49)
0.67 < 1.0			
Therefore, $\chi = 0.67$			

Example 2 pin ended column	Sheet 4	of 4	Rev
$N_{b,Rd} = \frac{\chi A f_y}{\gamma_{M1}} = \frac{0.67 \times 4840 \times 355}{1.0} \times 10^{-3} = 1151 \text{ kN}$		Eq (6.47))
$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{920}{1151} = 0.80 < 1.0$			
Therefore, the flexural buckling resistance of SHS is adequate.			
2.8 Blue Book Approach		Page refe in Section to P363 1	n 2.8 are
The resistances calculated in Sections 2.6 and 2.7 of this example could been obtained from SCI publication P363.	have	otherwise	
2.8.1 Design value of compression force $N_{\rm Ed} = 920 \text{ kN}$			
2.8.2 Cross section classification			
Under compression the cross section is at least Class 3.		Section 6 Page D-1	
2.8.3 Cross-sectional resistance			
Resistance to compression			
$N_{\rm c,Rd} = N_{\rm pl,Rd} = 1720 \text{ kN}$		Page D-1	.88
$\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{920}{1720} = 0.53 < 1.0$			
Therefore the resistance to compression is adequate.			
2.8.4 Buckling resistance			
Flexural buckling The buckling length about both axes is $L_{cr} = L = 6000 \text{ mm}$			
For buckling about both axes with a buckling length of 6.0 m, the buckling resistance is:	ing	Page D-1	7
$N_{\rm b,Rd}$ = 1150 kN			
$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{920}{1150} = 0.80 < 1.0$			
Therefore the flexural buckling resistance is adequate.			

	Job No.	CDS 168		Sheet	1 of 10 Rev
	Job Title	Worked exam	nples to Eu	rocode 3	with UK NA
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525	Subject	Example 3 – beam	Simply sup	ported la	terally restrained
Fax: (01344) 636570	Client	0.01	Made by	MEB	Date Feb 2009
CALCULATION SHEET		SCI	Checked by	ASM	Date Jul 2009
 3 Simply support beam 3.1 Scope The beam shown in Figure 3.1 is ful Verify the adequacy of a hot finished beam. 	ly restrai	ned laterally a	long its leng	gth.	References are to BS EN 1993-1-1: 2005, including its National Annex, unless otherwise stated.
2500 F 2500	1,2 75	2500	F _{d,1}	5_	
Figure 3.1 The design aspects covered in this ex	ample ar	e:			
 Calculation of design values of a Cross section classification Cross-sectional resistance: Shear buckling Shear Bending moment Resistance of web to transverse for Vertical deflection of beam at SL 	ctions for		5		
3.2 Actions (loading)					
3.2.1 Permanent actions Uniformly distributed load g_1 Concentrated load G_2					
3.2.2 Variable actions Uniformly distributed load q_1 Concentrated load Q_2 The variable actions given above are of each other. There are no other variable actions to	= 50 not due	kN to storage and	are not inde	ependent	

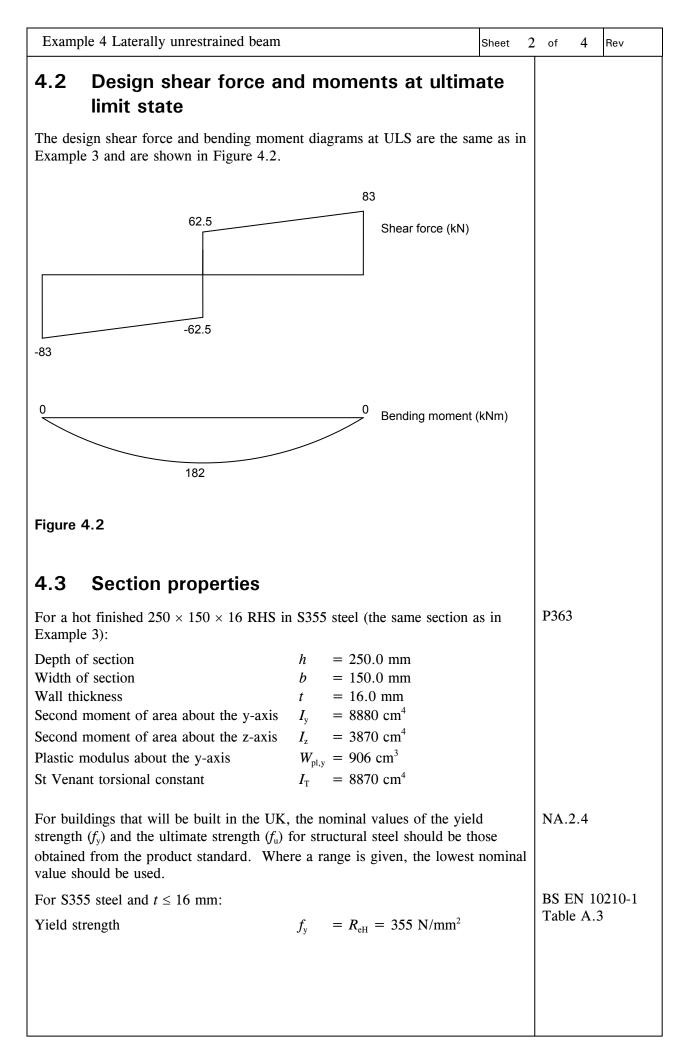
Example 3 Simply supported laterally restrained beam	Sheet	2 of	10	Rev
3.2.3 Partial factors for actions For the design of structural members not involving geotechnical actions, partial factors for actions to be used for ultimate limit state strength veri should be obtained from Table A1.2(B). Note 2 to Table A1.2(B) allow National Annex to specify different values for the partial factors.	fications		EN 19 3.1(4)	
Partial factor for permanent actions $\gamma_{\rm G} = 1.35$		EN 1		
Partial factor for variable actions $\gamma_Q = 1.50$		Tat	ole NA	A.A1.2(B)
Reduction factor $\xi = 0.925$				
For this example the factor for the combination value of a variable actio $\psi_0 = 0.7$	n is:		EN 19 ble NA	990 A.A1.1
3.2.4 Design values of combined actions for ultimate limi	t state			
BS EN 1990 presents two methods for determining the effects due to combination of actions for the ultimate limit state verification for the res of a structural member. The methods are to use expression (6.10) on it to determine the less favourable of the values from expressions (6.10a) a (6.10b). Note 1 to Table NA.A1.2(B) in the UK National Annex to BS EN 1990	s own or and			
either method to be used.				
Note: The two methods are briefly discussed in the introductory text to publication.	this			
The second method using expressions $(6.10a)$ and $(6.10b)$ is used here. Therefore the design values are taken as the most onerous values obtaine the following expressions:	ed from	BS	EN 19	990
$\gamma_{\rm Gj,sup} \boldsymbol{G}_{\rm j,sup} + \gamma_{\rm Q,1} \boldsymbol{\psi}_{0,1} \boldsymbol{Q}_1 + \gamma_{\rm Q,i} \boldsymbol{\psi}_{0,i} \boldsymbol{Q}_i \tag{6.1}$	0a)	Tat	.2(B)	
$\xi \gamma_{\rm Gj, sup} G_{\rm j, sup} + \gamma_{\rm Q, 1} Q_1 + \gamma_{\rm Q, i} \psi_{0, i} Q_i $ (6.1)	0b)			
Here Q_i is not required as the variable actions are not independent of ea and expression 6.10b gives the more onerous value. The design values				
Combination of uniformly distributed loads			EN 1	
$F_{d,1} = \xi \gamma_G g_1 + \gamma_Q q_1 = (0.925 \times 1.35 \times 3) + (1.5 \times 3) = 8.2 \text{ kN/m}$			ole NA Eq (6.	A.A1.2(B) 10b)
Combination of concentrated loads			1 (0,	/
$F_{\rm d,2} = \xi \gamma_{\rm G} G_2 + \gamma_{\rm Q} Q_2 = (0.925 \times 1.35 \times 40) + (1.5 \times 50) = 125.0 \text{ kN}$				
3.3 Design bending moments and shear force ultimate limit state	es at			
Span of beam $L = 5000 \text{ mm}$				
Maximum value of the design bending moment occurs at the mid-span:				
$M_{\rm Ed} = \frac{F_{\rm d,1}L^2}{8} + \frac{F_{\rm d,2}L}{4} = \frac{8.2 \times 5^2}{8} + \frac{125 \times 5}{4} = 182.0 \text{ kNm}$				

Example 3 Simply supported laterally restrained beam Sheet	3 of 10	Rev
Maximum design value of shear occurs at the supports:		
$V_{\rm Ed} = \frac{F_{\rm d,1}L}{2} + \frac{F_{\rm d,2}}{2} = \frac{8.2 \times 5}{2} + \frac{125}{2} = 83.0 \text{ kN}$		
Design value of shear force at the mid-span:		
$V_{\rm Ed,C} = V_{\rm Ed} - \frac{F_{\rm d,1}L}{2} = 83 - \frac{8.2 \times 5}{2} = 62.5 \text{ kN}$		
The design shear force and bending moment diagrams are shown in Figure 3.2.		
62.5 Shear force (kN)		
-62.5		
0 Bending moment (kNm)		
182		
Figure 3.2		
3.4 Section properties		
For a hot finished $250 \times 150 \times 16$ RHS in S355 steel:	P363	
Depth of section $h = 250.0 \text{ mm}$		
Width of section b = 150.0 mmWe like this because16.0 mm		
Wall thickness $t = 16.0 \text{ mm}$ Second moment of area about the y-axis $I_y = 8880 \text{ cm}^4$		
Radius of gyration about the y-axis $i_y = 8.79$ cm		
Radius of gyration about the y-axis $i_z = 5.80$ cm		
Plastic modulus about the y-axis $W_{pl,y} = 906 \text{ cm}^3$		
Cross-sectional area $A = 115 \text{ cm}^2$		
For buildings that will be built in the UK the nominal values of the yield strength (f_y) and the ultimate strength (f_u) for structural steel should be those obtained from the product standard. Where a range is given the lowest nominal value should be used.	NA.2.4	
For S355 steel and $t \le 16$ mm: Yield strength $f_y = R_{eH} = 355 \text{ N/mm}^2$	BS EN 1 Table A.	

Example 3 Simply supported laterally restrained beam Sheet	4	of	10	Rev
3.5 Cross section classification				
$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$		Table	5.2	
Internal part subject to bending (web)				
$c = h - 3t = 250 - 3 \times 16 = 202 \text{ mm}$				
$\frac{c}{t} = \frac{202}{16} = 12.63$				
The limiting value for Class 1 is $\frac{c}{t} \le 72\varepsilon = 72 \times 0.81 = 58.32$		Table	5.2	
12.63 < 58.32 therefore the internal part in bending is Class 1.				
Internal part subject to compression (flange)		Table	5.2	
$c = b - 3t = 150 - 3 \times 16 = 102 \text{ mm}$				
$\frac{c}{t} = \frac{102}{16} = 6.38$				
The limiting value for Class 1 is $\frac{c}{t} \le 33\varepsilon = 33 \times 0.81 = 26.73$				
6.38 < 26.73 therefore the internal part in compression is Class 1.				
Therefore the section is Class 1 for bending about the y-y axis.				
3.6 Partial factors for resistance				
$\gamma_{\rm M0} = 1.0$		NA.2	.15	
$\gamma_{\rm M1} = 1.0$				
3.7 Cross-sectional resistance				
3.7.1 Shear buckling				
The shear buckling resistance for webs should be verified according to Section of BS EN 1993-1-5 if:	5	6.2.6	(6)	
$\frac{h_{\rm w}}{h_{\rm w}} > \frac{72\varepsilon}{m}$		Eq (6	.22)	
$t_{\rm w} \eta$.1(0	-,	
$\eta = 1.0 \text{ (conservative)}$ $h_{w} = h - 2t = 250 - 2 \times 16 = 218 \text{ mm}$				
$n_{\rm W} = n - 2i - 250 - 2 \times 10 - 210 {\rm mm}$				

Example 3 Simply supported laterally restrained beam	Sheet	5	of 10	Rev
$\frac{h_{\rm w}}{t_{\rm w}} = \frac{218}{16} = 13.6$				
$\frac{72\varepsilon}{\eta} = \frac{72 \times 0.81}{1.0} = 58.3$				
13.6 < 58.3				
Therefore the shear buckling resistance of the web does not need to be ve	rified.			
3.7.2 Shear resistance				
Verify that:			6.2.6(1)	
$\frac{V_{\rm Ed}}{V_{\rm c,Rd}} \le 1.0$			Eq (6.17)	
For plastic design $V_{c,Rd}$ is the design plastic shear resistance $(V_{pl,Rd})$.				
$V_{\rm c,Rd} = V_{\rm pl,Rd} = \frac{A_{\rm v}(f_{\rm y} / \sqrt{3})}{\gamma_{\rm M0}}$			6.2.6(2) Eq (6.18)	
A_v is the shear area and is determined as follows for rolled RHS sections the load applied parallel to the depth.	with			
$A_v = \frac{Ah}{b+h} = \frac{11500 \times 250}{150 + 250} = 7187.5 \text{ mm}^2$		(6.2.6(3)(f)
$V_{\rm c,Rd} = \frac{A_{\rm v}(f_{\rm y}/\sqrt{3})}{\gamma_{\rm M0}} = \frac{7187.5 \times (355/\sqrt{3})}{1.0} \times 10^{-3} = 1473 \text{ kN}$		1	Eq (6.18)	
Maximum design shear $V_{\rm Ed} = 83.0$ kN		9	Sheet 3	
$\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{83}{1473} = 0.06 < 1.0$				
Therefore the shear resistance of the RHS is adequate.				
3.7.3 Resistance to bending Verify that:				
$\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1.0$			6.2.5(1) Eq (6.12)	
At the point of maximum bending moment (mid-span) check whether the force will reduce the bending resistance of the section.	shear	6	6.2.8(2)	
$\frac{V_{\rm c,Rd}}{2} = \frac{1473}{2} = 736.5 \text{ kN}$				
$V_{\rm Ed,C}$ = 62.5 kN < 736.5 kN				
Therefore no reduction in bending resistance due to shear is required.				

Example 3 Simply supported laterally restrained beam Sheet	5 of 10 Rev	
The design resistance for bending for Class 1 and 2 cross sections is:	6.2.5(2)	
$M_{\rm c,Rd} = M_{\rm pl,Rd} = \frac{W_{\rm pl,y}f_{\rm y}}{\gamma_{\rm M0}} = \frac{906 \times 10^3 \times 355}{1.0} \times 10^{-6} = 322 \text{ kNm}$	Eq (6.13)	
$\frac{M_{\rm Ed}}{M_{\rm c,Rd}} = \frac{182}{322} = 0.57 < 1.0$	6.2.5(1) Eq (6.12)	
Therefore the bending resistance is adequate.		
3.8 Resistance of the web to transverse forces	P363	
The design verification given in BS EN 1993-1-5 does not relate to closed hollow sections. Therefore, a method based on established practice is used.		
The design resistance of the web to transverse forces $(F_{\rm Rd})$ should be taken as the smaller of the bearing $(F_{\rm Rd,bearing})$ and buckling $(F_{\rm Rd,buckling})$ resistances of the web.		
Sealing plate		
End detail		
Figure 3.3		
As there are sealing plates welded to the ends of the RHS the bearing resistance of the webs may be determined from.		
$F_{\rm Rd, bearing} = (b_1 + nk) \frac{2t f_y}{\gamma_{\rm M0}}$	P363 9.2(a)	
where:		
b_1 is the stiff bearing length		
$b_1 = 75 \text{ mm}$		
n = 2 for end bearing or $n = 5$ for continuous over bearing		
Therefore,		
n = 2		
k = t for hollow sections, thus $k = 16$ mm		
$f_{\rm y} = 355 \mathrm{N/mm^2}$	Sheet 3	
$F_{\text{Rd, bearing}} = (75 + (2 \times 16)) \times 2 \times 16 \times \frac{355}{1.0} \times 10^{-3} = 1216 \text{ kN}$		
As flange plates are welded to the RHS , the buckling resistance $(F_{Rd,buckling})$ of the two webs is determined as follows:		
$F_{\rm Rd,buckling} = (b_1 + n_1) 2 t \chi \frac{f_y}{\gamma_{\rm M0}}$	Derived from P363 9.2(b)	


Example 3 Simply supported laterally restrained beam Sheet	7	of	10	Rev
where:				
$b_1 = 75 \text{ mm}$		P 363	3 9.2(b)
n_1 = is the length obtained by dispersion at 45° through half depth of the section		1 50.)).2(.0)
$n_1 = \frac{h}{2} = \frac{250}{2} = 125 \text{ mm}$				
t = 16 mm				
$\chi = \frac{1}{\varphi + \sqrt{\varphi^2 - \overline{\lambda}^2}}$ but $\chi \le 1.0$		6.3.2	1.2(1))
$\boldsymbol{\varPhi} = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$				
$\overline{\lambda} = \sqrt{rac{\lambda^2 f_y}{\pi^2 E}}$				
$\lambda = 1.5 \left(\frac{h-2t}{t}\right) \sqrt{3} = 1.5 \times \left(\frac{250 - (2 \times 16)}{16}\right) \times \sqrt{3} = 35.4$				
$\overline{\lambda} = \sqrt{\frac{35.4^2 \times 355}{\pi^2 \times 210000}} = 0.46$				
Each web may be considered as a solid rectangular section. Therefore use buckling curve 'c'		Tabl	e 6.2	
For buckling curve 'c' $\alpha = 0.49$		Tabl	e 6.1	
$\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right] = 0.5 \times \left[1 + 0.49 \times (0.46 - 0.2) + 0.46^2 \right] = 0.67$		6.3.2	1.2(1))
$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = \frac{1}{0.67 + \sqrt{0.67^2 - 0.46^2}} = 0.86 < 1.0$				
Therefore				
$\chi = 0.86$				
$F_{\rm Rd,buckling} = (b_1 + n_1) 2t\chi \frac{f_y}{\gamma_{\rm M0}}$				
$=(75+125)\times2\times16\times0.86\times\frac{135}{1.0}\times10^{-3} = 1954$ kN				
$F_{\rm Rd, bearing} = 1216 \text{ kN} < F_{\rm Rd, buckling} = 1954 \text{ kN}$				
Therefore, the resistance of the two webs of the RHS to transverse forces is:				
$F_{\rm Rd}$ = 1216 kN				
$\frac{V_{\rm Ed}}{F_{\rm Rd}} = \frac{83}{1216} = 0.07 < 1.0$				
The resistance of the web to transverse forces is adequate.				

Example 3 Simply supported laterally restrained beam	Sheet 8	of	10	Rev
3.9 Vertical deflection at serviceability limit sta	ate			
A structure should be designed and constructed such that all relevant serviceability criteria are satisfied.		7.1(1)	
No specific requirements at SLS are given in BS EN 1993-1-1, 7.1; it is let the project to specify the limits, associated actions and analysis model. Go on the selection of criteria is given in BS EN 1990, A.1.4.				
For this example, the only serviceability limit state that is to be considered vertical deflection under variable actions, because excessive deflection word damage brittle finishes that are added after the permanent actions have occ. The limiting deflection for this beam is taken to be span/360, which is conwith common design practice.	uld curred.			
3.9.1 Design values of actions				
As noted in BS EN 1990, the SLS partial factors on actions are taken as u and expression 6.14a is used to determine design effects. Additionally, as in Section 3.2.2, the variable actions are not independent and therefore no combination factors (ψ_i) are required. Thus the combination values of act are given by:	stated	BS E A1.4		
$F_{d,1,ser} = g_1 + q_1$ and $F_{d,2,ser} = G_2 + Q_2$				
As noted above, the permanent actions considered in this example occur d the construction process, therefore only the variable actions need to be considered in the serviceability verification for the functioning of the struct	-	BS E A1.4		
Thus $F_{d,1,ser} = q_1 = 3.0 \text{ kN/m}$ and $F_{d,2,ser} = Q_2 = 50.0 \text{ kN}$				
Therefore the vertical deflection is given by:				
$w = \left(\frac{1}{EI_{y}}\right) \left(\frac{5F_{d,1,ser}L^{4}}{384} + \frac{F_{d,2,ser}L^{3}}{48}\right)$				
Modulus of elasticity $E = 210000 \text{ N/mm}^2$		3.2.6	(1)	
$w = \left(\frac{1}{210000 \times 8880 \times 10^4}\right) \left(\frac{5 \times 3 \times 5000^4}{384} + \frac{50 \times 10^3 \times 5000^3}{48}\right) = 8.3$	mm			
The vertical deflection limit is:				
$w_{\rm lim} = \frac{L}{360} = \frac{5000}{360} = 13.9 \text{ mm}$				
8.3 mm < 13.9 mm				
Therefore the vertical deflection of the beam is satisfactory.				
3.10 Blue Book Approach		given	in S	rences lection to P363
The resistances calculated in Sections 3.7.2, 3.7.3 and 3.8 of this example have been obtained from SCI publication P363.	e could	1	s oth	erwise
3.10.1 Design moments and shear forces at ultimate limit st	ate			
Maximum design bending moment occurs at the mid-span:				
$M_{\rm Ed} = 182.0 \ \rm kNm$		Sheet	3	

Example 3 Simply supported laterally restrained beam	Sheet	9 of	10	Rev
Maximum design shear force occurs at the supports:				
$V_{\rm Ed} = 83.0 \ \rm kN$		She	et 3	
Design shear force at the mid-span:				
$V_{\rm Ed,C} = 62.5 \text{ kN}$		She	et 3	
3.10.2 Cross section classification				
Under bending about the major axis (y-y) the cross section is Class 1.		Page	e D-8	7
3.10.3 Cross-sectional resistance				
Shear resistance				
$V_{\rm c,Rd} = 1470 \ \rm kN$		Pag	e D-8	7
$\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{83}{1470} = 0.06 < 1.0$				
Therefore the shear resistance is adequate.				
Bending resistance				
$\frac{V_{\rm c,Rd}}{2} = \frac{1470}{2} = 735 \text{ kN}$				
$V_{\rm Ed,C}$ = 62.5 kN < 735 kN				
Therefore the shear is low and $M_{c,y,Rd} = 322 \text{ kNm}$		Pag	e D-8	7
$\frac{M_{\rm Ed}}{M_{\rm c,y,Rd}} = \frac{182}{322} = 0.57 < 1.0$				
Therefore the bending resistance is adequate >				
3.10.4 Resistance of the web to transverse forces at the en the beam	d of			
The Blue Book gives separate verifications for the bearing and buckling resistance of the webs.				
Bearing resistance				
$F_{\rm Rd,bearing} = b_1 C_2 + C_1$			ion 9	.2(a)
$b_1 = 75 \text{ mm}$		Shee	et 6	
For end bearing:		Pag	e D-1	17
$C_1 = 364$				
$C_2 = 11.4$				
$F_{\rm Rd, bearing} = (75 \times 11.4) + 364 = 1219 \text{ kN}$				

Example 3 Simply supported laterally restrained beam	Sheet	10 of	10	Rev
Buckling resistance				
$F_{\rm Rd,buckling} = b_1 C_2 + C_1$		Se	ction 9	.2(b)
Without welded flange plates to the bottom of the rolled hollow section:		Pa	ge D-1	17
$C_1 = 1200$				
$C_2 = 4.82$				
$F_{\rm Rd,buckling}$ = (75 × 4.82) + 1200 = 1561 kN				
$F_{\rm Rd, bearing} = 1219 \text{ kN} < F_{\rm Rd, buckling}$ 1561 kN				
Therefore the bearing resistance is critical.				
$\frac{F_{\rm Ed}}{F_{\rm Rd, bearing}} = \frac{83}{1219} = 0.07 < 1.0$				
Note				
The Blue Book (P363) does not include deflection values, so the SLS def verification must be carried out as in Section 3.9 of this example.	lection			

	Job No.	CDS 168		Sheet	1 of	4	Rev				
	Job Title	Worked exan	nples to Eu	rocode 3 v	le 3 with UK NA						
Silward Bark Assat Barks SI 5 70N	Subject	Example 4 –	Laterally u	nrestraine	ed beam						
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570			I								
CALCULATION SHEET	Client	SCI	Made by	MEB	Date		2009				
			Checked by	ASM	Date	Jul	2009				
4 Laterally unrestrained beam							es are to 193-1-1: luding its Annex,				
4.1 Scope Consider the beam given in Example the supports.	unle	ss oth	nerwise								
In addition to all the verifications for a laterally unrestrained beam must be											
open section beams. Circular and sq susceptible to this failure mode, but,	Lateral torsional buckling is usually the mode of failure for laterally unrestrained open section beams. Circular and square hollow sections are not usually susceptible to this failure mode, but, in unusual situations only, rectangular hollow sections which have a large slenderness $(\overline{\lambda}_{LT})$ are susceptible to lateral										
	,2 € 75 €	2500	→ = d,1 l								
75	0			<u>i</u>							
Figure 4.1											
The design aspect covered in this exa	mple is:										
• Lateral torsional buckling											

Example 4 Laterally unrestrained beam		Sheet	3 of	4	Rev
4.4 Material properties					
Modulus of elasticity Shear modulus	$E = 210000 \text{ N/mm}^2$ $G = 81000 \text{ N/mm}^2$		3.2.6	6(1)	
4.5 Lateral torsional bucl	ding				
If the slenderness for lateral torsional buck $\overline{\lambda}_{LT,0}$ the effects of lateral torsional buck cross-sectional verifications apply.			6.3.2	2.2(4))
In the UK National Annex the value of $\overline{\lambda}_{LT,0} = 0.4$	as	NA.2	2.17		
$\overline{\lambda}_{\mathrm{LT}} = \sqrt{\frac{W_{\mathrm{y}} \times f_{\mathrm{y}}}{M_{\mathrm{cr}}}}$			6.3.2	2.2(1))
$W_{\rm y} = W_{\rm pl,y}$ For class 1 or 2 cross sect	ions.				
BS EN 1993-1-1 does not give an expres critical buckling moment for lateral torsic		e elastic			
Access Steel document SN003 presents e determine $M_{\rm cr}$.	xpressions that may be used to				
The general expression for doubly symm $M_{\rm cr} = C_1 \frac{\pi^2 E I_z}{(kL)^2} \left\{ \sqrt{\left(\frac{k}{k_{\rm w}}\right)^2 \frac{I_{\rm w}}{I_z} + \frac{(kL)^2 G}{\pi^2 E I_z}} \right\}$			Acce docu		eel SN003
of the transverse loading $k \& k_w$ are effective length factors $C_1 \& C_2$ are coefficients which depen- and the end restraint condition $k_w = 1.0$ (unless advised otherwork k = 1.0 (for simply supported	d on the shape of the bending mons vise)	oment			
For RHS the effects of warping $\left(\frac{I_{\rm w}}{I_{\rm z}}\right)$ and	e negligible compared with the	effects			
of torsion $\left(\frac{(kL)^2 GI_{\rm T}}{\pi^2 EI_{\rm z}}\right)$, so may be negle	cted when determining $M_{\rm cr}$.				
Also, the effect of applying of the action section may be neglected for RHS section		re of the			
Therefore, the terms $\left(\frac{k}{k_{\rm w}}\right) \frac{I_{\rm w}}{I_{\rm z}}$ and $C_2 z_{\rm g}$	may be removed from the expr	ression			
and the following simplified expression u	sed for RHS sections:				

Example 4 Laterally unrestrained beam	Sheet 4	of	4	Rev
$M_{\rm cr} = C_1 \frac{\pi^2 E I_z}{(kL)^2} \sqrt{\frac{(kL)^2 G I_{\rm T}}{\pi^2 E I_z}}$				
For the design bending moment shown in Figure 4.2, C_1 is: $C_1 = 1.127$		Acces docur Table	nent	SN003
$M_{\rm cr} = 1.127 \times \left(\frac{\pi^2 \times 210000 \times 3870 \times 10^4}{(1 \times 5000)^2}\right)$				
$\times \left(\sqrt{\frac{(1 \times 5000)^2 \times 81000 \times 8870 \times 10^4}{\pi^2 \times 210000 \times 3870 \times 10^4}}\right) = 5500 \times 10^6 \text{ Nmm}$				
$\overline{\lambda}_{\text{LT}} = \sqrt{\frac{W_{\text{y}} \times f_{\text{y}}}{M_{\text{cr}}}} = \sqrt{\frac{906 \times 10^3 \times 355}{5500 \times 10^6}} = 0.24$		6.3.2	.2(1))
Since $\overline{\lambda}_{LT} < \overline{\lambda}_{LT,0}$ (0.24 < 0.4) the lateral torsional buckling effects a neglected and only cross-sectional verifications apply.	ıre	6.3.2	.2(4))
Since the cross-sectional verifications are satisfied in Example 3, the 250 \times 16 RHS in S355 steel is adequate to be unrestrained between the support shown in Figure 4.1.				
4.6 Blue Book Approach The verification given in Section 4.5 of this example could have been from SCI publication P363.	obtained	Section P363	on 4. unle	rences in 6 are to ess stated.
4.6.1 Design moment at ultimate limit state Maximum design moment occurs at the mid-span $M_{\rm Ed} = 182 \text{ kNm}$				
		Sheet	2	
4.6.2 Cross section classification Under bending about the major axis (<i>y</i> - <i>y</i>) the cross section is Class 1.		Page		7
4.6.3 Lateral torsional buckling resistance The limiting length (L_c) above which the lateral torsional bucking resistant should be verified is:	nce	Page	D-8′	7
$L_{\rm c}$ = 11.9 m				
L = 5 m < 11.9 m				
Therefore the lateral torsional buckling effects may be neglected.				

	Job No.	CDS 168		Sheet	1 of	9	Rev
	Job Title		amples to Eu	Irocode 3	with U	J K N .	A
SCI	Subject		– SHS subje				
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525		and bi-axia	-			I	
Fax: (01344) 636570	Client	COL	Made by	MEB	Date	Feb	2009
CALCULATION SHEET		SCI	Checked by	ASM	Date	2009	
5 SHS subject t compression a 5.1 Scope Verify the adequacy of a hot compression and bending about bo	and bi	nbined -axial k	5 steel to	ļ	Refe BS 1 200. Nati unle state	erence EN 19 5, inc ional 1 ess oth	2009 ss are to 993-1-1: luding its Annex, herwise
3500	Minor axis	h y					
Figure 5.1							
The design aspects covered in this	example a	are:					
• Cross section classification							
 Cross-sectional resistance to co Buckling resistance for combining the sector of the sec		•		•	,		
• Buckling resistance for combiting the verifications given in 6.3.3	-		υτ-αλιάι υςπ	ing using			
5.2 Design force and state	l mome	ents at u	ltimate l	imit			
Design compression force		$N_{ m Ed}$	= 600 kN				
Design Moment about the y-y axis			= 20 kNm				
Design Moment about the z - z axis	(minor ax	$M_{z,Ed}$	= 5 kNm				

Example 5 Combined axial compression and bi-axial bending Shee	t 2	of	9	Rev
5.3 Section properties				
For a hot finished $150 \times 150 \times 6.3$ SHS in S355 steel:		P363		
Depth of section $h = 150 \text{ mm}$ Width of section $b = 150 \text{ mm}$ Wall thickness $t = 6.3 \text{ mm}$ Second moment of area $I = 1223 \text{ cm}^4$ Radius of gyration $i = 5.85 \text{ cm}$ Elastic modulus $W_{el} = 163 \text{ cm}^3$ Plastic modulus $W_{pl} = 192 \text{ cm}^3$ Area $A = 35.8 \text{ cm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$ For buildings that will be built in the UK, the nominal values of the yield strength (f_y) and the ultimate strength (f_u) for structural steel should be those obtained from the product standard. Where a range is given the lowest nominal value should be used.	:	3.2.6 NA.2		
For S355 steel and $t \le 16$ mm: Yield strength $f_y = R_{eH} = 355 \text{ N/mm}^2$		BS E Table		210-1
5.4 Cross section classification $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$		Table	e 5.2	
An elastic stress distribution in a SHS under combined compression and bia bending can be sketched as shown in Figure 5.2. The classification of the section may be conservatively determined by using the limits in the 'part subject to compression' section of Table 5.2 given in BS EN 1993-1-1.	xial			
+				
<i>i</i> Compression Moment about the y-y axis (Major axis) Moment about the z-z axis (Major axis)				
=				
Note: Not to scale Combined compression and biaxial moments				
Figure 5.2				

Example 5 Combined axial compression and bi-axial bending Sheet	3 of	9	Rev
Internal compression part.			
$c = h - 3t = 150 - 3 \times 6.3 = 131.1 \text{ mm}$			
$\frac{c}{t} = \frac{131.1}{6.3} = 20.81$			
The most onerous limit is for Class 1, which is,			
$\frac{c}{t} \le 33\varepsilon = 33 \times 0.81 = 26.73$	Tat	ole 5.2	
20.81 < 26.73			
Therefore, the cross section is Class 1 under combined compression and bi-axial bending.			
5.5 Partial factors for resistance			
$\gamma_{\rm M0} = 1.0$	NA	.2.15	
$\gamma_{\rm M1} = 1.0$			
5.6 Cross-sectional resistance			
5.6.1 Bending and axial force			
Verify that:	6.2	.9.1(1)
$M_{\rm Ed} \leq M_{\rm N,Rd}$		(6.31)	
For bi-axial bending, verify that:	60	0 1/6	\ \
$\left(\frac{M_{\rm y,Ed}}{M_{\rm N,y,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm z,Ed}}{M_{\rm N,z,Rd}}\right)^{\beta} \le 1.0$.9.1(6) (6.41)	
where:			
$M_{\rm N,Rd}$ is the design plastic moment resistance reduced due to the axial force			
For a square hollow section:			
$M_{\mathrm{N,Rd}} = M_{\mathrm{N,y,Rd}} = M_{\mathrm{N,z,Rd}}$			
Therefore, where fastener holes are not to be accounted for:			
$M_{N,Rd} = M_{N,y,Rd} M_{pl,y,Rd} \frac{1-n}{1-0.5a_w} \text{but} M_{N,y,Rd} \le M_{pl,y,Rd}$	6.2	.9.1(5))
The design bending moment resistance of the cross section $(M_{pl,Rd})$ is:			
$M_{\rm pl,y,Rd} = \frac{W_{\rm pl,y}f_{\rm y}}{\gamma_{\rm M0}} = \frac{192 \times 10^3 \times 355}{1.0} \times 10^{-6} = 68 \text{ kNm}$	6.2	.5(2) ((6.13)
$n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}}$	6.2	.9.1(5))
² pl,Rd			

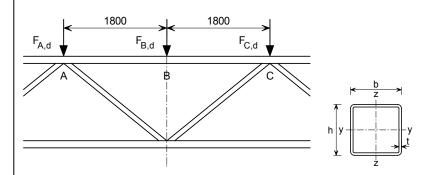
[]	
Example 5 Combined axial compression and bi-axial bending Sheet	4 of 9 Rev
The design resistance of the cross section to compression $(N_{pl,Rd})$ is:	6.2.3(2)
$N_{\rm pl,Rd} = \frac{A f_{\rm y}}{\gamma_{\rm M0}} = \frac{3580 \times 355}{1.0} \times 10^{-3} = 1271 \text{ kN}$	Eq (6.6)
$n = \frac{600}{1271} = 0.47$	6.2.9.1(5)
$a_{\rm w} = \frac{A - 2bt}{A}$ but $a_{\rm w} \le 0.5$ (for hollow sections)	
$a_{\rm w} = \frac{3580 - (2 \times 150 \times 6.3)}{3580} = 0.47 < 0.5$	
As $0.47 < 0.5$	
$a_{\rm w} = 0.47$	
$M_{\rm N,y,Rd} = M_{\rm pl,y,Rd} \frac{1-n}{1-0.5a_{\rm w}} = 68 \times \frac{1-0.47}{1-(0.5 \times 0.47)} = 47 \text{ kNm}$	6.2.9.1(5)
$47 \text{ kNm} < 68 \text{ kNm} = M_{\text{pl},\text{y},\text{Rd}}$	
Therefore, $M_{\rm N,Rd} = M_{\rm N,y,Rd} = 47 \text{ kNm}$	
$M_{\rm y,Ed} = 20 \text{ kNm} < 47 \text{ kNm}$	6.2.9.1(1)
$M_{\rm z,Ed} = 5 \text{ kNm} < 47 \text{ kNm}$	Eq (6.31)
Therefore the cross-sectional resistance is satisfactory for each effect separately.	
Combined resistance to bi-axial bending and axial force:	
For SHS	6.2.9.1(6)
$\alpha = \beta = \frac{1.66}{1 - 1.13n^2}$ but $\alpha = \beta \le 6$	
$\alpha = \beta = \frac{1.66}{1 - (1.13 \times 0.47^2)} = 2.21$	
2.21 < 6	
Therefore, $\alpha = \beta = 2.21$	
$\left(\frac{M_{y,Ed}}{M_{N,y,Rd}}\right)^{\alpha} + \left(\frac{M_{z,Ed}}{M_{N,z,Rd}}\right)^{\beta} = \left(\frac{20}{47}\right)^{2.21} + \left(\frac{5}{47}\right)^{2.21} = 0.16 < 1.0$	6.2.9.1(6) Eq (6.41)
Therefore, the cross-sectional resistance to combined compression and bendir is adequate.	ıg

Example 5 Combined axial compression and bi-axial bending Sheet 5	of 9 Rev
5.7 Buckling resistance of member	
5.7.1 Combined bending and axial compression	
The following criteria should be satisfied.	
$\frac{N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm yy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y.Ed}}{\chi_{\rm LT} M_{\rm y.Rk} / \gamma_{\rm M1}} + k_{\rm yz} \frac{M_{\rm z.Ed} + \Delta M_{\rm z.Ed}}{M_{\rm z.Rk} / \gamma_{\rm M1}} \le 1.0$	Eq (6.61)
$\frac{N_{\rm Ed}}{\chi_z N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm zy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y.Ed}}{\chi_{\rm LT} M_{\rm y.Rk} / \gamma_{\rm M1}} + k_{\rm zz} \frac{M_{\rm z.Ed} + \Delta M_{\rm z.Ed}}{M_{\rm z.Rk} / \gamma_{\rm M1}} \le 1.0$	Eq (6.62)
where:	
For Class 1, 2 and 3 cross sections $\Delta M_{y,Ed}$ and $\Delta M_{z,Ed}$ are zero.	
For Class 1 cross sections	
$N_{\rm Rk} = Af_{\rm y} = 3580 \times 355 \times 10^{-3} = 1271 \ \rm kN$	Table 6.7
$M_{z,Rk} = M_{y,Rk} = W_{pl,y}f_y = 192 \times 10^3 \times 355 \times 10^{-6} = 68 \text{ kNm}$	
For square hollow sections with flexural buckling lengths that are equal about both axes:	
$\chi_{y} = \chi_{z}$	
For flexural buckling	6.3.1.2(1)
$\chi = \frac{1}{(\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)})} \le 1.0$	Eq (6.49)
where:	
$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right)\left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross sections)	6.3.1.3(1) Eq (6.50)
For this example it is assumed that the buckling length about both axes is:	
$L_{\rm cr} = L = 3500 \ {\rm mm}$	
$\lambda_1 = 93.9\varepsilon = 93.9 \times 0.81 = 76$	
$\overline{\lambda} = \left(\frac{3500}{58.5}\right) \times \left(\frac{1}{76}\right) = 0.79$	
For a hot finished SHS in S355 steel, use buckling curve 'a'	Table 6.2
For curve 'a' the imperfection factor is $\alpha = 0.21$	Table 6.1
$\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right] = 0.5 \times \left[1 + 0.21 \times \left(0.79 - 0.2 \right) + 0.79^2 \right] = 0.87$	6.3.1.2(1)
$\chi = \frac{1}{(\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)})} = \frac{1}{0.87 + \sqrt{(0.87^2 - 0.79^2)}} = 0.81$	Eq (6.49)
0.81 < 1.0	
Therefore, $\chi = 0.81$	

Example 5 Combined axial compression and bi-axial bending	Sheet	6 of	9	Rev
Square hollow sections are not susceptible to failure by lateral torsional buckling.		6.3.2	2.1(2)	1
Therefore, the lateral torsional buckling reduction factor is:				
$\chi_{\rm LT} = 1.0$				
For sections not susceptible to torsional deformation use Table B.1. to determine the interaction factors k_{yy} , k_{zz} , k_{yz} and k_{zy} .				
For class 1 and 2 cross sections		Table	e B.1	
$k_{yy} = C_{my} \left[1 + \left(\overline{\lambda} - 0.2 \right) \left(\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right) \right] \text{ but}$				
$k_{\rm yy} \leq C_{\rm my} \left[1 + \left(\frac{0.8 N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm M1}} \right) \right]$				
M _{y,Ed} M _{z,Ed}				
$\psi_{y}M_{y,Ed}$ $\psi_{z}M_{z,Ed}$				
y-y axis z-z axis				
Figure 5.3				
From the bending moment diagrams for both the y-y and z-z axes ψ = Therefore,	0	Table	e B.3	
$C_{\rm my} = C_{\rm mz} = C_{\rm mLT} = 0.6 + 0.4 \psi \ge 0.4$				
$C_{\rm my} = C_{\rm mz} = C_{\rm mLT} = 0.6 > 0.4$				
Therefore,				
$C_{\rm my} = C_{\rm mz} = C_{\rm mLT} = 0.6$				
$k_{yy} = C_{my} \left[1 + \left(\overline{\lambda}_{y} - 0.2 \right) \left(\frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} \right) \right]$		Table	e B.1	
$= 0.6 \times \left[1 + (0.79 - 0.2) \times \left(\frac{600}{0.81 \times 1271/1.0} \right) \right] = 0.81$				
but				

Example 5 Combined axial compression and bi-axial bending	Shoot 7	′ of 9	Pov
Example 5 Combined axial compression and br-axial bending	Sheet 7	of 9	Rev
$k_{yy} \leq C_{my} \left[1 + \left(0.8 \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right) \right]$			
$= 0.6 \times \left[1 + \left(0.8 \times \frac{600}{0.81 \times 1271/1} \right) \right] = 0.88$			
0.81 < 0.88			
Therefore $k_{yy} = 0.81$			
$k_{\rm zy} = 0.6 \times k_{\rm yy} = 0.6 \times 0.81 = 0.49$			
By inspection of the formula given in Table B.1 it can be seen that	for a SHS		
$k_{zz} = k_{yy} = 0.81$			
$k_{\rm yz} = k_{\rm zy} = 0.49$			
$\frac{N_{\rm Ed}}{\chi_{\rm y}N_{\rm Rk}/\gamma_{\rm M1}} + k_{\rm yy} \frac{M_{\rm y.Ed} + \Delta M_{\rm y.Ed}}{\chi_{\rm LT}M_{\rm y.Rk}/\gamma_{\rm M1}} + k_{\rm yz} \frac{M_{\rm z.Ed} + \Delta M_{\rm z.Ed}}{M_{\rm z.Rk}/\gamma_{\rm M1}} \le 1.0$	1	Eq (6.61))
$\left(\frac{600}{0.81 \times 1271/1.0}\right) + 0.81 \times \left(\frac{20+0}{1.0 \times 68/1.0}\right) + 0.49 \times \left(\frac{5+0}{68/1.0}\right) = 0.49 \times \left(\frac{5+0}{68/$	86 < 1.0		
$\frac{N_{\text{Ed}}}{\chi_{z}N_{\text{Rk}}/\gamma_{\text{M1}}} + k_{zy} \frac{M_{y.\text{Ed}} + \Delta M_{y.\text{Ed}}}{\chi_{\text{LT}}M_{y.\text{Rk}}/\gamma_{\text{M1}}} + k_{zz} \frac{M_{z.\text{Ed}} + \Delta M_{z.\text{Ed}}}{M_{z.\text{Rk}}/\gamma_{\text{M1}}} \le 1.0$		Eq (6.62))
$\left(\frac{600}{0.81 \times 1271/1.0}\right) + 0.49 \times \left(\frac{20+0}{1.0 \times 68/1.0}\right) + 0.81 \times \left(\frac{5+0}{68/1.0}\right) = 0.5$	79 < 1.0		
Both criteria are met, therefore the buckling resistance of the hot fit $150 \times 150 \times 6.3$ in S355 steel is adequate.	nished SHS		
5.8 Blue Book Approach The resistances calculated in Sections 5.6 and 5.7 of this example c been obtained from SCI publication P363.	ould have	Page refe Section 5 P363 unl otherwise	.8 are to ess
been obtailed from Ser publication 1 303.			
5.8.1 Design force and moments at ultimate limit stat	e		
Design compression force $N_{\rm Ed} = 60$			
Design moment about the y-y axis (major axis) $M_{y,Ed} = 20$ Design moment about the z-z axis (minor axis) $M_{z,Ed} = 51$			
$z_{z,Ed} = J$			
5.8.2 Cross section classification			
$N_{\rm pl,Rd} = 1270 \ \rm kN$		Page D-1	86
$n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}}$			
Limiting value of n for Class 2 sections is 1.0		Page D-1	86
$n \qquad = \frac{600}{1270} = 0.47 < 1.0$			

Example 5 Combined axial compression and bi-axial bending	Chart	0	- 6	0	David
Example 5 Combined axial compression and bi-axial bending	Sheet	8	01	9	Rev
Therefore, under combined bending and axial compression, the section least Class 2.	is at				
5.8.3 Cross-sectional resistance					
For Class 1 or 2 cross sections there are two verifications that may be performed.					
Verification 1 (conservative)					
Verify that:			Secti	on 1	0.2.1
$\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm c,y,Rd}} + \frac{M_{\rm z,Ed}}{M_{\rm c,z,Rd}} \le 1.0$					
As the section is square, $M_{c,y,Rd}$ & $M_{c,z,Rd} = M_{c,Rd}$					
For					
$n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}} = \frac{600}{1270} = 0.47$					
$M_{\rm c,Rd}$ = 68.2 kNm		1	Page	D-1	86
$\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm c,y,Rd}} + \frac{M_{\rm z,Ed}}{M_{\rm c,z,Rd}} = \frac{600}{1270} + \frac{20}{68.2} + \frac{5}{68.2} = 0.84 < 1.0$					
Therefore this criterion is satisfied.					
Verification 2 (more exact)					
Verify that:					
$\left(\frac{M_{\rm y,Ed}}{M_{\rm N,y,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm z,Ed}}{M_{\rm N,z,Rd}}\right)^{\beta} \le 1.0$			6.2.9	EN 19 0.1(6) 5.41)	
From the earlier calculations,			Secti	on 5	.6.1 of
$\alpha = \beta = 2.21$		1	this e	exam	ple
For square rolled hollow sections, $M_{N,y,Rd}$ & $M_{N,z,Rd} = M_{N,Rd}$					
From interpolation for $n = 0.47$					
$M_{\rm N,Rd} = 47.3 \text{ kNm}$		1	Page	D-1	86
$\left(\frac{M_{\rm y,Ed}}{M_{\rm N,y,Rd}}\right)^{\alpha} + \left(\frac{M_{\rm z,Ed}}{M_{\rm N,z,Rd}}\right)^{\beta} = \left(\frac{20}{47.3}\right)^{2.21} + \left(\frac{5}{47.3}\right)^{2.21} = 0.16 < 1.0$					
Therefore the cross-sectional resistance is adequate.					


Example 5 Combined axial compression and bi-axial bending	Sheet	9	of	9	Rev
 5.8.4 Buckling resistance When both of the following criteria are satisfied: The cross section is Class 1, 2 or 3 γ_{M1} = γ_{M0} 					
The buckling verification given in BS EN 1993-1-1 6.3.3 (expressions 6 and 6.62) may be simplified to: $\frac{N_{\rm Ed}}{N_{\rm b,y,Rd}} + k_{\rm yy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rd}} + k_{\rm yz} \frac{M_{\rm z.Ed}}{M_{\rm c,z,Rd}} \le 1.0$ $\frac{N_{\rm Ed}}{N_{\rm b,z,Rd}} + k_{\rm zy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rd}} + k_{\rm zz} \frac{M_{\rm z.Ed}}{M_{\rm c,z,Rd}} \le 1.0$	5.61				
For the bending moment diagram in Figure 5.3 $k_{yy} = 0.81$ $k_{yz} = 0.49$ $k_{zy} = 0.49$ $k_{zz} = 0.81$ For square rolled hollow sections, $M_{b,Rd} = M_{c,Rd}$, and since $\gamma_{M1} = \gamma_{M0}$, $M_{c,z,Rd} = M_{c,Rd}$			Shee Shee Shee Shee	t 7 t 7	
$M_{c,Rd} = 68.2 \text{ kNm}$ As the section is a square rolled hollow section and the flexural bucklin lengths about both axes are equal, $N_{b,y,Rd} = N_{b,z,Rd} = N_{b,Rd}$.	g		Page	D-1	86
Since $n < n$ limit i.e. $0.47 < 1.0$, the tabulated values of $N_{b,Rd}$ are values from linear interpolation for $L_{cr} = 3.5 \text{ m}$ $N_{b,Rd} = 1014 \text{ kNm}$ $\left(\frac{600}{1014}\right) + \left(0.81 \times \frac{20}{68.2}\right) + \left(0.49 \times \frac{5}{68.2}\right) = 0.87 < 1.0$ $\left(\frac{600}{1014}\right) + \left(0.49 \times \frac{20}{68.2}\right) + \left(0.81 \times \frac{5}{68.2}\right) = 0.80 < 1.0$ Therefore, the buckling resistance is adequate.	id.		Page	D-1	87

	Job No.	CDS 168		Sheet	1	of	10	Rev		
	Job Title	Job Title Worked examples to Eurocode 3 with UK NA								
SCI	Subject	Subject Example 6 – Top chord in a lattice girder								
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525										
Fax: (01344) 636570	Client	SCI	Made by	MEB	Da	ate	Feb 2	2009		
CALCULATION SHEET		501	Checked by	ASM	Da	ate	Jul 20	009		
· · · · ·						Pofoi	roncos	are to		

6 Top chord in a lattice girder

6.1 Scope

The top chord of the lattice girder shown in Figure 6.1 is laterally restrained at locations A, B and C. Verify the adequacy of a hot finished $150 \times 150 \times 5$ SHS in S355 steel for this chord.

References are to BS EN 1993-1-1: 2005, including its National Annex, unless otherwise stated.

Figure 6.1

The design aspects covered in this example are:

- Cross section classification
- Cross-sectional resistance to combined shear, bending and axial compression
- Buckling resistance for combined bending and axial compression.

The adequacy of the welded joints should be verified using BS EN 1993-1-8. Those verifications are not shown in this example.

6.2 Design values of actions at ultimate limit state

Design concentrated force at A	$F_{\rm A,d} = 22.4 \text{ kN}$
Design concentrated force at B	$F_{\rm B,d} = 22.4 \text{ kN}$
Design concentrated force at C	$F_{\rm C,d} = 22.4 \rm kN$

6.3 Design moments and forces at ultimate limit state

From analysis:

Compression force between A and C $N_{Ed} = 525 \text{ kN}$

The design bending moments and shear force are shown in Figure 6.2.

Example 6 Top chord in a lattice girder Sheet	2 of 10	Rev
The design bending moment $(M_{\rm Ed})$ and corresponding design shear force $(V_{\rm Ed})$ at B are: $M_{\rm Ed} = 10.1 \text{ kNm}$		
$V_{\rm Ed} = 11.2 \text{ kN}$ 10.1 A -10.1 B -10.1 C B B C B C B C B C B B C B C B C B C B C B C B C B C B C B C B C B C C B C B C C B C C B C C C C C C C C		
11.2 Shear force (kN)11.2		
Figure 6.2		
6.4 Section properties For a hot finished $150 \times 150 \times 5.0$ SHS in S355 steel:	P363	
Depth of section $h = 150 \text{ mm}$ Width of section $b = 150 \text{ mm}$ Wall thickness $t = 5.0 \text{ mm}$ Second moment of area $I = 1000 \text{ cm}^4$ Radius of gyration $i = 5.90 \text{ cm}$ Elastic modulus $W_{el} = 134 \text{ cm}^3$ Plastic modulus $W_{pl} = 156 \text{ cm}^3$ Area $A = 28.70 \text{ cm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$	3.2.6(1)	
For buildings that will be built in the UK, the nominal values of the yield strength (f_y) and the ultimate strength (f_u) for structural steel should be those obtained from the product standard. Where a range is given the lowest nominal value should be used.	NA.2.4	
For S355 steel and $t \le 16 \text{ mm}$ Yield strength $f_y = R_{eH} = 355 \text{ N/mm}^2$	BS EN 10 Table A.3	
6.5 Cross section classification		
$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$ The elastic stress distribution in a square hollow section under combined bending about one axis and compression can be sketched as shown in Figure 6.3. Therefore the classification of the section may be conservatively determined by using the class limits in the 'part subject to compression' section of Table 5.2 given in BS EN 1993-1-1.	Table 5.2	

Example 6 Top chord in a lattice girder Sheet	3 of 10	Rev
Compression Bending moment Combined compression and bending about one axis		
Note: Not to scale		
Figure 6.3		
Internal compression part (web)		
$c = h - 3t = 150 - 3 \times 5 = 135 \text{ mm}$		
$\frac{c}{t} = \frac{135}{5} = 27$		
The limiting value for Class 1 is $\frac{c}{t} \le 33\varepsilon = 33 \times 0.81 = 26.73$	Table 5.2	
The limiting value for Class 2 is $\frac{c}{t} \le 38\varepsilon = 38 \times 0.81 = 30.78$		
26.73 < 27 < 30.78		
Therefore, the cross section is Class 2 under combined bending and compression about the y - y axis shown in Figure 6.1.		
6.6 Partial factors for resistance		
$\gamma_{\rm M0} = 1.0$	NA.2.15	
$\gamma_{\rm M1} = 1.0$		
6.7 Cross-sectional resistance		
671 Bonding about and evial force		
6.7.1 Bending, shear and axial force At cross section B		
If the design shear force (V_{Ed}) is less than 50% of the design plastic shear resistance $(V_{pl,Rd})$, allowance for the shear force on the resistance moment is not required, except where shear buckling reduces the section resistance.	6.2.10(2)	
$V_{\rm pl,Rd} = \frac{A_{\rm v}(f_{\rm y}/\sqrt{3})}{\gamma_{\rm M0}}$	6.2.6(2) Eq (6.18)	
$A_{\rm v}$ is the shear area and is determined as follows for an SHS.		
$A_{\rm v} = \frac{Ah}{b+h} = \frac{2870 \times 150}{150 + 150} = 1435.0 \text{ mm}^2$	6.2.6(3)(f)

Example 6 Top chord in a lattice girder	Sheet	4	of	10	Rev
$1435 \times (355/\sqrt{3})$		Τ			I
$V_{\rm pl,Rd} = \frac{1435 \times (355 / \sqrt{3})}{1.0} \times 10^{-3} = 294 \text{ kN}$					
Design shear force $V_{\rm Ed} = 11.2$ kN					
$\frac{V_{\rm pl,Rd}}{2} = \frac{294}{2} = 147 \ \rm kN$					
11.2 kN < 147 kN					
Therefore, the criterion is satisfied, subject to verification of shear buckli	ng.				
Verify whether shear buckling reduces the resistance					
The shear buckling resistance for webs should be verified according to Se of BS EN 1993-1-5 if:	ection 5	5 6	6.2.6	6)	
$\frac{h_{\rm w}}{t_{\rm w}} > \frac{72\varepsilon}{\eta}$]	Eq (6	5.22)	
$h_{\rm w} = h - 2t = 150 - (2 \times 5) = 140 \text{ mm}$				N199 re 5.1	93-1-5
η may be obtained from BS EN 1993-1-5 or conservatively taken as η =	= 1.0				
$t_{\rm w} = t = 5 {\rm mm}$					
$\frac{h_{\rm w}}{t_{\rm w}} = \frac{140}{5} = 28.0$					
$\frac{72\varepsilon}{\eta} = \frac{72 \times 0.81}{1.0} = 58.3$					
28.0 < 58.3					
Therefore, the shear buckling resistance of the SHS web does not need to verified.	be				
The effect of the shear force on the resistance to combined bending and a force does not need to be allowed for.	xial				
Combined bending and axial force					
For Class 1 and 2 cross sections, verify that:				(1)	
$M_{\rm Ed} \leq M_{\rm N,Rd}$		1	Eq (6	5.51)	
where:					
$M_{\rm N,Rd}$ is the design plastic moment resistance reduced due to the axial for	ce.				
Where fastener holes are not to be accounted for, the design moment resi for the major axis $(M_{N,y,Rd})$ is determined from:	stance	0	5.2.9	0.1(5)	
$M_{N,y,Rd} = M_{pl,y,Rd} \frac{1-n}{1-0.5a_w}$ but $M_{N,y,Rd} \le M_{pl,y,Rd}$			Eq (6	5.39)	

Example 6 Top chord in a lattice girder Sheet	5 of 10 Rev
The design plastic moment resistance of the cross section about the major axis $(M_{\text{pl},y,\text{Rd}})$ for Class 1 and 2 cross sections is determined from:	6.2.5(2)
$M_{\rm pl,y,Rd} = \frac{W_{\rm pl,y} f_y}{\gamma_{\rm M0}} = \frac{156 \times 10^3 \times 355}{1.0} \times 10^{-6} = 55 \text{ kNm}$	Eq (6.13)
$n = \frac{N_{\rm Ed}}{N_{\rm pl,Rd}}$	6.2.9.1(5)
$N_{\rm pl,Rd}$ is the design plastic resistance of the gross cross section:	
$N_{\rm pl,Rd} = \frac{Af_{\rm y}}{\gamma_{\rm M0}} = \frac{2870 \times 355}{1.0} \times 10^{-3} = 1019 \text{ kN}$	Eq (6.6)
$n = \frac{525}{1019} = 0.52$	
$a_{\rm w} = \frac{A - 2bt}{A}$ but $a_{\rm w} \le 0.5$	6.2.9.1(5)
$a_{\rm w} = \frac{2870 - (2 \times 150 \times 5)}{2870} = 0.48 < 0.5$	
Therefore, $a_{\rm w} = 0.48$	
$M_{\rm N,Rd} = M_{\rm pl,y,Rd} \frac{1-n}{1-0.5a_{\rm w}} = 55 \times \frac{1-0.52}{1-(0.5 \times 0.48)} = 35 \text{ kNm}$	Eq (6.39)
$M_{\rm Ed}$ = 10.1 kNm < 35 kNm	
$\frac{M_{\rm Ed}}{M_{\rm N,Rd}} = \frac{10.1}{35} = 0.29 < 1.0$	
Therefore the resistance of the cross section at B to combined bending, shear and axial force is adequate.	I
By inspection, the resistance of the cross section at A and C is also adequate.	
6.8 Buckling resistance of member	
6.8.1 Combined bending and axial compression	
Cross-sectional resistance at the ends of the member (A and C) to combined bending, shear and axial force is satisfactory (see 6.7.1 above).	6.3.3(2)
For combined bending and axial compression of the member, the following criteria should be satisfied.	
$\frac{N_{\rm Ed}}{\chi_{\rm y} N_{\rm Rk} / \gamma_{\rm M1}} + k_{\rm yy} \frac{M_{\rm y, Ed} + \Delta M_{\rm y, Ed}}{\chi_{\rm LT} M_{\rm y, Rk} / \gamma_{\rm M1}} + k_{\rm yz} \frac{M_{\rm z, Ed} + \Delta M_{\rm z, Ed}}{M_{\rm z, Rk} / \gamma_{\rm M1}} \le 1.0$	Eq (6.61)
$\frac{N_{\rm Ed}}{\chi_{\rm z}N_{\rm Rk}/\gamma_{\rm M1}} + k_{\rm zy}\frac{M_{\rm y,Ed} + \Delta M_{\rm y,Ed}}{\chi_{\rm LT}M_{\rm y,Rk}/\gamma_{\rm M1}} + k_{\rm zz}\frac{M_{\rm z,Ed} + \Delta M_{\rm z,Ed}}{M_{\rm z,Rk}/\gamma_{\rm M1}} \le 1.0$	Eq (6.62)
For Class 1, 2 and 3 cross sections $\Delta M_{y,Ed}$ and $\Delta M_{z,Ed}$ are zero.	

Example 6 Top chord in a lattice girder Sheet	5 of 10 Rev
$N_{\rm Rk} = Af_{\rm y}$ (for Class 1 and 2 cross sections)	Table 6.7
$N_{\rm Rk}$ = 2870 × 355 × 10 ⁻³ = 1019 kN	
$M_{\rm Rk} = W_{\rm pl} f_{\rm y}$ (for Class 1 and 2 cross sections)	Table 6.7
As the section is square	
$M_{z,Rk} = M_{y,Rk} = 156 \times 10^3 \times 355 \times 10^{-6} = 55 \text{ kNm}$	
Calculation of reduction factors for buckling χ_y , χ_z and χ_{LT}	
For flexural buckling $\chi_y = \chi$	6.3.1.2(1) Eq (6.49)
$\chi = \frac{1}{(\Phi + \sqrt{(\Phi^2 - \overline{\lambda}^2)})}$ but $\chi \le 1.0$	
where:	6.3.1.3(1)
$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right)$ (For Class 1, 2 and 3 cross sections).	Eq (6.50)
The buckling lengths may be taken as the distance between restraints, therefore:	
For buckling about y-y axis $L_{y,cr} = 3600 \text{ mm}$	
For buckling about the z-z axis $L_{z,cr} = 1800 \text{ mm}$	
$\lambda_1 = 93.9\varepsilon = 93.9 \times 0.81 = 76.06$	
Buckling about the y-y axis:	
$\overline{\lambda}_{y} = \left(\frac{3600}{59.0}\right) \left(\frac{1}{76.06}\right) = 0.80$	
$\Phi_{y} = 0.5 \left[1 + \alpha \left(\overline{\lambda}_{y} - 0.2 \right) + \overline{\lambda}_{y}^{2} \right]$	6.3.1.2(1)
For hot finished SHS in S355 steel use buckling curve 'a'	Table 6.2
For curve 'a' the imperfection factor is $\alpha = 0.21$	Table 6.1
$\Phi_{y} = 0.5 \times [1 + 0.21 \times (0.80 - 0.2) + 0.80^{2}] = 0.88$	6.3.1.2(1)
$\chi_{y} = \frac{1}{(\Phi_{y} + \sqrt{(\Phi_{y}^{2} - \overline{\lambda}_{y}^{2})})} = \frac{1}{0.88 + \sqrt{(0.88^{2} - 0.80^{2})}} = 0.80$	Eq (6.49)
0.80 < 1.0	
Therefore, $\chi_y = 0.80$	
Buckling about the <i>z</i> - <i>z</i> axis:	6.3.1.3(1) Eq (6.50)
$\overline{\lambda}_z = \left(\frac{1800}{59.0}\right) \left(\frac{1}{76.1}\right) = 0.40$	
$\Phi_z = 0.5 \times [1 + 0.21 \times (0.40 - 0.2) + 0.40^2] = 0.60$	6.3.1.2(1)

Example 6 Top chord in a lattice girder	neet 7	of 10	Rev
$\chi_z = \frac{1}{(\Phi_z^2 + \sqrt{(\Phi_z^2 - \overline{\lambda}_z^2)})} = \frac{1}{0.60 + \sqrt{(0.60^2 - 0.40^2)}} = 0.95$		Eq (6.49)	
0.95 < 1.0			
Therefore,			
$\chi_z = 0.95$			
Lateral torsional buckling			
Square hollow sections are not susceptible to lateral torsional buckling.		6.3.2.1(2)	
Therefore, $\chi_{\rm LT} = 1.0$			
Calculation of interaction factors k_{yy} , k_{yz} , k_{zy} and k_{zz}		6.3.3(5)	
For sections not susceptible to torsional deformation, use Table B.1 to dete the interaction factors k_{yy} , k_{yz} , k_{zy} and k_{zz} . However, for this example, the design bending moment about the minor axis is zero, therefore values for k_{zz} are not required.	:		
For class 1 and 2 cross sections			
$k_{yy} = C_{my} \left[1 + \left(\overline{\lambda}_y - 0.20 \right) \left(\frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right) \right] \text{ but}$		Table B.1	
$k_{yy} \le C_{my} \left[1 + \left(\frac{0.8 N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right) \right]$			
For bending about the y-y axis consider points braced in the z -z direction.		Table B.3	
Points A and C are braced in the z - z direction. Therefore, the following be moment diagram between A and C needs to be considered when calculating			
$\begin{array}{c} 10.1 \\ (M_h) \end{array} \qquad $			
A C			
Figure 6.4			
From the above bending moment diagram:			
$\psi = 1.0$			
$\alpha_{\rm s} = \frac{M_{\rm s}}{M_{\rm h}} = \frac{-10.1}{10.1} = -1.0$			
Therefore,			
C_{my} = $-0.8lpha_{\mathrm{s}} \ge 0.4$			
$C_{\rm my} = -0.8 \times -1.0 = 0.8 > 0.4$			
Hence,			
$C_{\rm my} = 0.8$			

Example 6 Top chord in a lattice girderSiner8 of 10Rev
$$k_{yy} = C_{wy} \left[1 + (\bar{\lambda}_y - 0.2) \left(\frac{N_{rat}}{\chi, N_{wi} / \gamma_{wi}} \right) \right] \leq C_{wy} \left[1 + \left(\frac{0.8 N_{rat}}{\chi, N_{wi} / \gamma_{wi}} \right) \right]$$
Table B.1 $k_{yy} = 0.8 \times \left[1 + (0.8 - 0.2) \times \left(\frac{525}{0.8 \times 1019/1.0} \right) \right] = 1.11$ $C_{wy} \left[1 + \left(\frac{0.8 N_{wat}}{\chi, N_{wat} / \gamma_{wi}} \right) \right] = 0.8 \times \left[1 + \left(\frac{0.8 \times 525}{0.8 \times 1019/1.0} \right) \right] = 1.21$ $1.11 < 1.21$ $1.11 < 1.21$ Therefore, $k_{yy} = 0.6 \times 1.11 = 0.67$ Table B.1 $\frac{N_{wat}}{\chi, N_{wat} / \gamma_{wit}} + k_{yy} \frac{M_{ywat} + \Delta M_{ywat}}{M_{xwat} / \gamma_{wit}} + k_{yy} \frac{M_{ywat} + \Delta M_{ywat}}{M_{xwat} / \gamma_{wit}} + k_{wz} \frac{M_{xwat} + \Delta M_{xwat}}{M_{xwat} / \gamma_{wit}} = 0.66 \times 1.0$ Eq (6.61) $\frac{N_{wat}}{\chi, N_{wat} / \gamma_{wit}} + k_{wy} \frac{M_{ywat} + \Delta M_{ywat}}{M_{xwat} / \gamma_{wit}} + k_{wz} \frac{M_{xwat} + \Delta M_{xwat}}{M_{xwat} / \gamma_{wit}} \leq 1.0$ Eq (6.62) $\frac{N_{wat}}{\chi, N_{wat} / \gamma_{wit}} + k_{wy} \frac{M_{ywat} + \Delta M_{ywat}}{M_{xwat} / \gamma_{wit}} + k_{wz} \frac{M_{xwat} + \Delta M_{xwat}}{M_{xwat} / \gamma_{wit}} \leq 1.0$ Eq (6.62) $\frac{N_{wat}}{\chi, N_{wat} / \gamma_{wit}} + k_{wy} \frac{M_{ywat} + \Delta M_{xwat}}{M_{xwat} / \gamma_{wit}} = 0.67 < 1.0$ Eq (6.62)As both criteria are satisfied, the buckling resistance of the member is adequate.**6.9 Blue Book Approach**Barce Model and C $N_{wat} = 525 \text{ kN}$ The resistances calculated in Sections 6.7 and 6.8 of this example could have been obtained from SCI publication P363.**6.9.1 Design forces and moments at ultimate limit state**Axial compression force between A and C $N_{wat} = 525 \text{ kN}$ The design bending moment diagram is shown in Figure 6.2. The design bending moment (M_{wal}) and corresponding design shear force (V_{wa}) at Bare: $M_{wat} = 11$

	1				1
Example 6 Top chord in a lattice girder	Sheet	9	of	10	Rev
Limiting value of n for Class 2 sections is 1.0			Page	D-18	86
$n \qquad = \frac{525}{1020} = 0.51 \ < \ 1.0$					
Therefore, under combined bending and axial compression the section is Class 2.	at least	;			
6.9.3 Cross-sectional resistance					
Shear resistance					
$V_{\rm c,Rd} = 294 \text{ kN}$			Page	D-84	4
$\frac{V_{\rm Ed}}{V_{\rm c,Rd}} = \frac{11.2}{294} = 0.04 < 1.0$					
Therefore the design shear resistance is adequate.					
Compression resistance					
$N_{\rm c,Rd}$ = $N_{\rm pl,Rd}$ = 1020 kN			Page	D-18	86
$\frac{N_{\rm Ed}}{N_{\rm c,Rd}} = \frac{525}{1020} = 0.51 < 1.0$					
Therefore the design resistance to compression is adequate.					
Bending resistance					
$\frac{V_{\rm c,Rd}}{2} = \frac{294}{2} = 147 \text{ kN}$					
$V_{\rm Ed}$ = 11.2 kN < 147 kN					
Therefore the shear at the point of maximum bending moment is low. The effect of the axial compression on the bending moment resistance need allowed for.					
From linear interpolation for $n = 0.51$,			Page	D-18	86
$M_{\rm N,Rd} = 35.7 \rm kN$			C		
$\frac{M_{\rm y,Ed}}{M_{\rm N,Rd}} = \frac{10.1}{35.7} = 0.28 < 1.0$					
Therefore the design resistance to bending is adequate.					
6.9.4 Buckling resistance					
Bending and axial compression buckling resistance					
When both of the following criteria are satisfied:					
• The cross section is Class 1, 2 or 3					
• $\gamma_{M1} = \gamma_{M0}$					
The verification expressions given in BS EN 1993-1-1 6.3.3 (Expressions and 6.62) may be simplified to:	6.61				

Example 6 Top chord in a lattice girder she	eet]	LO of	10	Rev
$\frac{N_{\rm Ed}}{N_{\rm b,y,Rd}} + k_{\rm yy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rd}} + k_{\rm yz} \frac{M_{\rm z.Ed}}{M_{\rm c,z,Rd}} \le 1.0$				
$\frac{N_{\rm Ed}}{N_{\rm b,z,Rd}} + k_{\rm zy} \frac{M_{\rm y.Ed}}{M_{\rm b,Rd}} + k_{\rm zz} \frac{M_{\rm z.Ed}}{M_{\rm c,z,Rd}} \le 1.0$				
As $M_{z,Ed} = 0$ kNm the values of k_{yz} and k_{zz} are not required.				
For the bending moment diagram in Figure 6.4				
$k_{yy} = 1.11$ $k_{zy} = 0.67$		Shee Shee		
Since $n < n$ limit i.e. 0.51 < 1.0, the tabulated values of $N_{b,Rd}$ are valid.				
The buckling length for flexural buckling about the major axis (y-y) is 3.6 m	n			
From linear interpolation for $L_{\rm cr} = 3.6$ m		Page	e D-1	87
$N_{\rm b,y,Rd} = N_{\rm b,Rd} = 806 \text{ kN}$				
The buckling length for flexural buckling about the minor axis $(z-z)$ is 1.8 m	n			
The shortest buckling length given in SCI P363 is 2 m, therefore for $L_{cr} = 2.0$ m.		Page	e D-1	87
$N_{\rm b,z,Rd} = N_{\rm b,Rd} = 959 \text{ kN}$				
For square rolled hollow sections, $M_{b,Rd} = M_{c,Rd}$, and since $\gamma_{M1} = \gamma_{M0}$: $M_{c,z,Rd} = M_{c,Rd}$				
$M_{\rm c,Rd} = 68.2 \text{ kNm}$		Page	e D-1	86
$\left(\frac{525}{806}\right) + 1.11 \times \left(\frac{10.1}{68.2}\right) = 0.82 < 1.0$				
$\left(\frac{525}{959}\right) + 0.67 \times \left(\frac{10.1}{68.2}\right) = 0.65 < 1.0$				
Therefore, the buckling resistance is adequate.				

	Job No.	CDS 168		Shaat	1 ~ 4	7	Rev
						-	
SCI			•				L
Silwood Park, Ascot, Berks SL5 7QN	Subject Example 7 – Column in simple con			nstruct	10n		
Telephone: (01344) 636525 Fax: (01344) 636570	Client		Made by	MEB	Date	Feb	2009
CALCULATION SHEET	SCI						
 CALCULATION SHEET 7 Column in simp 7.1 Scope Verify the adequacy of the column she the following assumptions may be may	hown in l nade: rms part <i>is defined</i> at the bas	Figure 7.1 betw of a structure of in the Access St se. by flexible er	veen levels of simple reel documen		BS 200 its 1 Ann othe	EN 19 5, inc Natior Natior Nex, un erwise	es are to 993-1-1: cluding nal nless e stated.
 3500 Figure 7.1 The design aspects covered in this ex Cross section classification Simplified interaction criteria for bending, as given in the Access S 7.2 Design values of a Design force from beam 1 F_{1,Ed} Design force from beam 2 F_{2,Ed} Design force from beam 3 F_{3,Ed} 	combine Steel doct actions = 95 kN = 130 k	L re: ed axial compre ument SN048. s at ultima N					

Examp	ble 7 Column in simple construction	Sheet	2	of	7	Rev
7.3	Design force and moments at ultimate lim state	it				
7.3.1	Compression force					
	ign compression force in the column between levels B and C is: = 165 kN					
The des given by	ign compression force acting on the column between levels A and y:	B is				
$N_{\rm Ed}$ =	= $N_{1,\text{Ed}} + F_{1,\text{Ed}} + F_{2,\text{Ed}} + F_{3,\text{Ed}} = 165 + 95 + 130 + 80 = 470 \text{ kN}$					
7.3.2	Moments due to eccentricity					
	umns in simple construction the beam reactions are assumed to act of 100 mm from the face of the column.	t at a		Acce docu		teel t SN005
For a he	ot finished $150 \times 150 \times 5$ SHS in S355 steel.					
The des	ign bending moments at level B					
$M_{\mathrm{B,y,Ed}}$	= $F_{2,Ed}\left(\frac{h}{2} + 100\right) = 130 \times \left(\frac{150}{2} + 100\right) \times 10^{-3} = 22.8 \text{ kNm}$					
$M_{ m B,z,Ed}$	$= (F_{1, \text{Ed}} - F_{3, \text{Ed}}) \left(\frac{b}{2} + 100\right)$					
	$= (95 - 80) \times \left(\frac{150}{2} + 100\right) \times 10^{-3} = 2.6 \text{ kNm}$					
level B defined storey h	noments are distributed between the column lengths above and bel in proportion to their bending stiffness. For this purpose the stiff as the second moment of area about the appropriate axis divided beight. Where the ratio of stiffness does not exceed 1.5, the mom ed equally between the columns above and below the joint.	ness is by the				
distribut Howeve based of	e ratio of stiffness is less than 1.5 therefore the moment may be ted equally between the column lengths above and below the joint er, to illustrate the other method here the moment has been distrib in the stiffness of the column above and below the joint. As the se pus, the distribution of the moment is determined using storey height	uted ection	is			
-	A-B height is 3.5 m and Storey B-C height is 3.0 m. Therefore, to bending moments acting on the column length between levels A ar		re:			
	$= 22.8 \times \frac{3}{6.5} = 10.5$ kNm					
$M_{\rm z,Ed}$	$= 2.6 \times \frac{3}{6.5} = 1.2$ kNm					

Example 7 Column in simple construction Sheet 3	of 7 Rev
7.4 Section properties	
For a hot finished $150 \times 150 \times 5$ SHS in S355 steel:	P363
Depth of section h = 150 mmWidth of section b = 150 mmWall thickness t = 5.0mmSecond moment of area I = 1000 cm ⁴ Radius of gyration i = 5.9 cmElastic modulus W_{el} = 134 cm ³ Plastic modulus W_{pl} = 156 cm ³ Area A = 28.7 cm ² Modulus of elasticity E = 210000 N/mm ²	3.2.6(1)
For buildings that will be built in the UK, the nominal values of the yield strength (f_y) and the ultimate strength (f_u) for structural steel should be those obtained from the product standard. Where a range is given, the lowest nominal value should be used.	NA.2.4
For S355 steel and $t \le 16$ mm: Yield strength $f_y = R_{eH} = 355$ N/mm ²	BS EN 10210-1 Table A.3
7.5 Cross section classification $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$ As shown in Example 5, the critical criterion for the hollow section under combined compression and bi-axial bending is the internal part subject to compression.	Table 5.2
Internal flange in compression $c = b - 3t = 150 - 3 \times 5 = 135 \text{ mm}$ $\frac{c}{t} = \frac{135}{5} = 27$ The limiting value for Class 1 is $\frac{c}{t} \le 33\varepsilon = 33 \times 0.81 = 26.73$ The limiting value for Class 2 is $\frac{c}{t} \le 38\varepsilon = 38 \times 0.81 = 30.78$ 26.73 < 27 < 30.78 Therefore, the cross section is Class 2 under combined biaxial bending and compression.	Table 5.2
7.6 Partial factors for resistance $\gamma_{M0} = 1.0$ $\gamma_{M1} = 1.0$	NA.2.15

Example 7 Column in simple construction	Sheet	4	of	7	Rev
	Sheet	-	01	/	1100
7.7 Simplified interaction criterion					
6.3.3(4) of BS EN 1993-1-1 gives two expressions that should be satisfie members with combined bending and axial compression (see Example 5)					
However, for columns in simple construction, the separate verifications for section resistance and buckling resistance can be replaced by the interaction criterion given in Access Steel document SN048. This simple criterion respressed as:	ion	s		ess S imen	teel t SN048
$\frac{N_{\rm Ed}}{N_{\rm b,min,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm b,y,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm cb,z,Rd}} \le 1.0$					
and may be used when the following are satisfied:					
• column is a hot rolled I or H section, or an SHS					
• The cross section is class 1, 2 or 3 under compression					
• The bending moment diagrams about each axis are linear					
• The column is restrained laterally in both the <i>y</i> - <i>y</i> and <i>z</i> - <i>z</i> directions a floor level, but is unrestrained between the floors	t each				
• The moment ratios (ψ_i) as defined in Table B.3 in BS EN 1993-1-1 a than the values given in Tables 2.1 or 2.2 in the Access Steel docum SN048. or In the case where a column base is nominally pinned (i.e. $\psi_y = 0$ and $\psi_z = 0$) the axial force ratio satisfies the following limit: $\frac{N_{\rm Ed}}{N_{\rm b,y,Rd}} \le 0.83$	ent				
Here the					
• Section is a Class 2 hot finished SHS					
• Moment ratios are $\psi_y = 0$ and $\psi_z = 0$, as the base of the column nominally pinned (see Figure 7.2). Therefore determine the axial for		0.			
$M_{y,Ed} = 10.5 \text{ kNm}$ $M_{z,Ed} = 1.2 \text{ kNm}$ $\psi_y M_{y,Ed} = 0 \text{ kNm}$ $\psi_z M_{z,Ed} = 0 \text{ kNm}$ $z-z \text{ axis}$ Figure 7.2					

Example 7 Column in simple construction Sheet	5	of	7	Rev
Axial force ratio:				
$N_{\rm b,y,Rd} = \frac{\chi_{\rm y} A f_{\rm y}}{\gamma_{\rm M1}}$			ess Si iment	teel t SN048
$\chi_{y} = rac{1}{arPsi} + \sqrt{arPsi^{2} - \overline{\lambda_{y}}^{2}}$		6.3. Eq (1.3 (6.49))
$\overline{\lambda}_{y} = \sqrt{\frac{Af_{y}}{N_{cr}}} = \frac{L_{cr}}{i} \times \frac{1}{\lambda_{1}}$		6.3. Eq (1.3 (6.50))
$\lambda_1 = 93.9 \times \varepsilon = 93.9 \times 0.81 = 76.1$		6.3.	1.3	
Buckling lengths about both axes:				
$L_{\rm cr} = L = 3500 \text{ mm}$				
$\overline{\lambda}_{y} = \frac{L_{cr}}{i} \cdot \frac{1}{\lambda_{1}} = \frac{3500}{59} \times \frac{1}{76.1} = 0.78$		6.3. Eq (1.3 (6.50))
For hot finished hollow sections in S355 steel use buckling curve a		Tab	les 6.	1
For buckling curve a the imperfection factor is $\alpha = 0.21$		Tab	les 6.	2
$\Phi = 0.5 \left[1 + a(\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right]$		6.3.	1.2	
$= 0.5 \times \left[1 + 0.21 \times (0.78 - 0.2) + 0.78^{2} \right] = 0.87$				
$\chi_{y} = \frac{1}{\Phi + \sqrt{\Phi^{2} - \overline{\lambda_{y}}^{2}}} = \frac{1}{0.87 + \sqrt{0.87^{2} - 0.78^{2}}} = 0.80$		6.3. Eq (1.3 (6.49))
$N_{\rm b,y,Rd} = \frac{\chi_{\rm y} A f_{\rm y}}{\gamma_{\rm M1}} = \frac{0.8 \times 2870 \times 355 \times 10^{-3}}{1.0} = 815 \text{ kN}$				
$\frac{N_{\rm Ed}}{N_{\rm b,y,Rd}} = \frac{470}{815} = 0.58$				
0.58 < 0.83				
Therefore all the criteria given above are met, so the simplified expression may be used for this example.				
Simplified interaction criterion:				
$\frac{N_{\rm Ed}}{N_{\rm b,min,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm b,y,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm cb,z,Rd}} \le 1.0$				
where:				
$N_{\rm b,min,Rd}$ is the lesser of $N_{\rm b,y,Rd}$ and $N_{\rm b,z,Rd}$ in this example $N_{\rm b,y,Rd}$ and $N_{\rm b,z,Rd}$ are equal as the section is square and the buckling lengths are the same for both axes.				
Therefore, $N_{\rm b,min,Rd} = N_{\rm b,y,Rd}$				

Example 7 Column in simple construction Sheet 6	of 7 Rev
$N_{\rm b,y,Rd} = \frac{\chi_{\rm y} A f_{\rm y}}{\gamma_{\rm M1}} = 815 \text{ kN}$	
$M_{\rm b,y,Rd} = \chi_{\rm LT} \frac{f_{\rm y} W_{\rm pl,y}}{\gamma_{\rm M1}}$	
$M_{\rm cb,z,Rd} = \frac{f_{\rm y} W_{\rm pl,z}}{\gamma_{\rm M1}}$	
Because square hollow sections are not susceptible to lateral torsional buckling,	
$\chi_{\rm LT} = 1.0$	
$M_{\rm b,y,Rd} = 1.0 \times \frac{355 \times 156 \times 10^3}{1.0} \times 10^{-6} = 55 \text{ kNm}$	
In this example γ_{M1} has the same value as γ_{M0} therefore;	Sheet 3
$M_{\rm cb,z,Rd} = M_{\rm pl,z,Rd} = \frac{f_{\rm y}W_{\rm pl,z}}{\gamma_{\rm M0}} = \frac{355 \times 156 \times 10^3}{1.0} \times 10^{-6} = 55 \text{ kNm}$	
$\frac{N_{\rm Ed}}{N_{\rm b,min,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm b,y,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm cb,z,Rd}} = \frac{470}{815} + \frac{10.5}{55} + 1.5 \times \left(\frac{1.2}{55}\right) = 0.80 < 1.0$	
Therefore, the resistance of the hot finished $150 \times 150 \times 5$ SHS in S355 steel is adequate.	
7.8 Blue Book Approach	Page references in Section7.8 are to P363 unless
The resistances calculated in Section 7.7 of this example could have been obtained from SCI publication P363.	otherwise stated.
7.8.1 Forces and moment at ultimate limit state	
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$	
Design compression force in column between levels A and B is:	
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A-B due to the reactions of the floor	
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are:	
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed} = 10.5 \text{ kNm}$	
Design compression force in column between levels A and B is: $N_{\rm Ed}$ = 470 kN The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed}$ = 10.5 kNm $M_{\rm z,Ed}$ = 1.2 kNm	Page D-186
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed} = 10.5 \text{ kNm}$ $M_{\rm z,Ed} = 1.2 \text{ kNm}$ 7.8.2 Cross section classification $N_{\rm pl,Rd} = 1020 \text{ kN}$ $n = \frac{N_{\rm Ed}}{N_{\rm Ed}}$	Page D-186
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed} = 10.5 \text{ kNm}$ $M_{\rm z,Ed} = 1.2 \text{ kNm}$ 7.8.2 Cross section classification $N_{\rm pl,Rd} = 1020 \text{ kN}$ $N_{\rm Ed}$	Page D-186
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed} = 10.5 \text{ kNm}$ $M_{\rm z,Ed} = 1.2 \text{ kNm}$ 7.8.2 Cross section classification $N_{\rm pl,Rd} = 1020 \text{ kN}$ $n = \frac{N_{\rm Ed}}{N_{\rm Ed}}$	Page D-186
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed} = 10.5 \text{ kNm}$ $M_{\rm z,Ed} = 1.2 \text{ kNm}$ 7.8.2 Cross section classification $N_{\rm pl,Rd} = 1020 \text{ kN}$ $n = \frac{N_{\rm Ed}}{N_{\rm Ed}}$	Page D-186
Design compression force in column between levels A and B is: $N_{\rm Ed} = 470 \text{ kN}$ The design bending moments at B in storey A–B due to the reactions of the floor beams are: $M_{\rm y,Ed} = 10.5 \text{ kNm}$ $M_{\rm z,Ed} = 1.2 \text{ kNm}$ 7.8.2 Cross section classification $N_{\rm pl,Rd} = 1020 \text{ kN}$ $n = \frac{N_{\rm Ed}}{N_{\rm Ed}}$	Page D-186

Example 7 Column in simple construction	Sheet 7	of	7	Rev
Limiting value of n for Class 2 sections is 1.0		Page	D-1	86
$N = \frac{470}{1020} = 0.46 < 1.0$				
Therefore, under combined axial compression and bending the section is a Class 2.	at least			
7.8.3 Simplified interaction criterion				
The simplified interaction criterion given in Access Steel document SN04 here to verify the adequacy of the member.	8 is used	1		
Simplified interaction criterion:		Acce		
$\frac{N_{\rm Ed}}{N_{\rm b,min,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm b,y,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm cb,z,Rd}} \le 1.0$		docu	ment	t SN048
$N_{\rm b,min,Rd}$ is the lesser of $N_{\rm b,y,Rd}$ and $N_{\rm b,z,Rd}$ in this example $N_{\rm b,y,Rd}$ and are equal as the section is square and the buckling lengths are the same for axes, therefore,				
$N_{\mathrm{b,min,Rd}} = N_{\mathrm{b,y,Rd}} = N_{\mathrm{b,z,Rd}} = N_{\mathrm{b,Rd}}$				
Since $n < n$ limit i.e. 0.47 < 1.0, the tabulated values of $N_{\rm b,Rd}$ are valid.		Page	D-1	87
From linear interpolation for $L_{cr} = 3.5 \text{ m}$				
$N_{\rm b,Rd} = 818 \text{ kNm}$				
For square rolled hollow sections, $M_{\rm b,y,Rd} = M_{\rm c,Rd}$				
As $\gamma_{M1} = \gamma_{M0}, M_{cb,z,Rd} = M_{c,Rd}$				
$M_{\rm c,Rd} = 55.4 \text{ kNm}$		Page	D-1	86
Therefore,				
$\left \frac{N_{\rm Ed}}{N_{\rm b,min,Rd}} + \frac{M_{\rm y,Ed}}{M_{\rm b,y,Rd}} + 1.5 \frac{M_{\rm z,Ed}}{M_{\rm cb,z,Rd}} = \frac{470}{818} + \frac{10.5}{55.4} + 1.5 \times \left(\frac{1.2}{55.4}\right) = 0.80 < 1000$	1.0			
Therefore, the simplified criterion is verified and thus the resistance of th is adequate.	e sectior	1		

3 BIBLIOGRAPHY

Eurocode Parts:

All the following Parts have been published by BSI with their respective UK National Annexes.

BS EN 1990 Eurocode - Basis of structural design

BS EN 1991 Eurocode	1: Actions on structures
BS EN 1991-1-1	Part 1-1: General actions. Densities, self-weight, imposed loads for buildings
BS EN 1991-1-2	Part 1-2: General actions. Actions on structures exposed to fire
BS EN 1991-1-3	Part 1-3: General actions. Snow loads
BS EN 1991-1-4	Part 1-4: General actions. Wind actions
BS EN 1991-1-5	Part 1-5: General actions. Thermal actions
BS EN 1991-1-6	Part 1-6: General actions. Actions during execution
BS EN 1991-1-7	Part 1-7: General actions. Accidental actions
BS EN 1992 Eurocode	2: Design of concrete structures
BS EN 1992-1-1	Part 1-1: General rules and rule for buildings
BS EN 1992-1-2	Part 1-2: General rules - Structural fire design
BS EN 1993 Eurocode	3: Design of steel structures
BS EN 1993-1-1	Part 1-1: General rules and rules for buildings
BS EN 1993-1-2	Part 1-2: General rules - Structural fire design
BS EN 1993-1-3	Part 1-3: General rules – Supplementary rules for cold- formed members and sheeting
BS EN 1993-1-5	Part 1-5: Plated structural elements
BS EN 1993-1-8	Part 1-8: Design of joints
BS EN 1993-1-9	Part 1-9: Fatigue
BS EN 1993-1-10	Part 1-10: Material toughness and through-thickness properties
BS EN 1993-1-12	Part 1-12: Additional rules for the extension of BS EN 1993 up to steel grades S700
BS EN 1994 Eurocode	4: Design of composite steel and concrete structures
BS EN 1994-1-1	Part 1-1: General rules and rules for buildings
BS EN 1994-1-2	Part 1-2: General rules – Structural fire design

Product Standards

The following product standards are referenced in the Eurocode Parts. They have been published by BSI as BS EN 10025-1 etc.

BS EN 10025-1:2004 Hot rolled products of structural steels – Part 1: General technical delivery conditions

BS EN 10025-2:2004 Hot rolled products of structural steels – Part 2: Technical delivery conditions for non-alloy structural steels

BS EN 10210-1:2006 Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 1: Technical delivery conditions

BS EN 10210-2:2006 Hot finished structural hollow sections of non-alloy and fine grain structural steels. Part 2: Tolerances, dimensions and sectional properties

Published Documents

PD 6695-1-10 Recommendations for the design of structures to BS EN 1993-1-10 BSI, 2009

SCI publications

1. Design of floors for vibration: A new approach. Revised Edition (P354) The Steel Construction Institute, 2009

The publications listed below are in accordance with Eurocodes and the UK National Annexes

- 2. Steel building design: Introduction to the Eurocodes (P361) SCI, 2009
- 3. Steel building design: Concise Eurocodes (P362), SCI, 2009
- 4. Steel building design: Design data (P363) SCI and BCSA, 2009
- 5. Steel building design: Medium-rise braced frames (P365) SCI, 2009
- Steel building design: Worked examples Hollow sections (P374) SCI, 2009
- 7. Steel building design: Fire resistance design (P375) SCI, 2009
- 8. Steel building design: Worked examples for students (P387) SCI, 2009
- Joints in steel construction: Simple connections in accordance with Eurocode 3 (P358) SCI & BCSA, to be published in 2010
- 10. Steel building design: Composite members (P359) SCI, to be published in 2010
- 11. Steel building design: Stability of beams and columns (P360) SCI, to be published in 2010

- 12. Handbook of structural steelwork Eurocode Edition (P366) BCSA & SCI, to be published in 2010
- 13. Steel building design: Combined bending and torsion (P385) SCI, to be published in 2010

Access Steel documents

The following documents are available from www.access-steel.com.

SN003 NCCI: Elastic critical moment for lateral torsional buckling

SN005 NCCI: Determination of moments on columns in simple construction

SN020 NCCI: "Simple Construction" - concept and typical frame arrangements

SN048 NCCI: Verification of columns in simple construction – a simplified interaction criterion (GB). (*This is a localized resource for UK*)

Typeset and page make-up by The Steel Construction Institute, Ascot, Berks. SL5 7QN Printed by Information Press, Eynsham, Oxford OX29 4JB 1,300 11/09 CDS174