SCI PUBLICATION 263

Wind-moment Design of Low Rise Frames

P R SALTER BSc, CEng, MIStructE G H COUCHMAN MA, PhD, CEng, MICE D ANDERSON BSc (Eng), PhD, CEng, FICE, FIStructE

Published by:

The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN

Tel: 01344 623345 Fax: 01344 622944

© 1999 The Steel Construction Institute

Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of the Institute at a discount are not for resale by them.

Publication Number: SCI-P-263

ISBN 1 85942 097 4

British Library Cataloguing-in-Publication Data. A catalogue record for this book is available from the British Library.

FOREWORD

This publication has been prepared by Mr Paul Salter and Dr Graham Couchman of The Steel Construction Institute and Professor David Anderson of the University of Warwick. The analytical work leading to the publication was carried out by Dr N Brown and Dr M Md Tahir of the University of Warwick. Valuable comments were received during the drafting from Dr R M Lawson of The Steel Construction Institute.

Current SCI publications related to the wind-moment method are:

Wind-moment design for unbraced frames (SCI P082)

Joints in steel construction: Moment connections (SCI P207, published jointly with BCSA)

Wind-moment design of unbraced composite frames (SCI P264, to be published in 2000).

This publication is effectively a replacement for publication SCI P082, which was first published in 1991. It reflects the results of more recent studies, for instance considering frames that are unbraced in both principal directions. It is limited to low rise frames in recognition of the fact that wind-moment design, although possible, is not recommended for building frames in excess of four storeys.

Part-funding from the Department of the Environment, Transport and the Regions under the Partners in Innovation initiative is gratefully acknowledged, as is additional funding received from Corus (formerly British Steel) Sections, Plates & Commercial Steels.

CONTENTS

			Page No.
SUN	MMARY		vi
NO	TATION		ix
1	INTRO	DUCTION	1
	1.1	Benefits of wind-moment design	2
	1.2	Connections	3
	1.3	Scope of this publication	4
2	DESIC	IN OF <i>MAJOR AXIS</i> FRAMES	8
	2.1	Range of application	8
	2.2	Global analysis at the ultimate limit state	8
	2.3	Design of beams at the ultimate limit state	10
	2.4	Design of columns at the ultimate limit state	11
	2.5	Design of connections at the ultimate limit state	11
	2.6	Column base design	12
	2.7	Serviceability limit state	12
3	DESIC	14	
	3.1	Design at the ultimate limit state	14
	3.2	Design at the serviceability limit state	17
REF	ERENCI	ES	18
APF	PENDIX	A Portal method of analysis	21
APF	PENDIX	B Worked example: <i>major axis</i> frame	25
APF	PENDIX	C Worked example: <i>minor axis</i> frame	48
APF	PENDIX	D Connection details and capacities	64

SUMMARY

This publication presents procedures for the design of *wind-moment* frames in accordance with BS 5950-1. In this method of design, the frame is made statically determinate by treating the connections as *pinned* under vertical loads and *fixed* under horizontal loads (with certain assumed points of zero moment). The publication gives design procedures for frames that are braced in the minor axis direction and for frames that do not have bracing in either principal direction. The limitations of the method, which differ slightly for these two cases, are explained. In particular, it should be noted that the method is only recommended for low-rise frames up to four storeys high.

In addition to design procedures for the ultimate and serviceability limit states, fully worked design examples are presented for two cases. The publication also reproduces the resistance tables for standard *wind-moment* connections taken from SCI/BCSA publication P207 *Joints in steel construction: Moment connections*. These connections use flush or extended end plates and grade 8.8 M20 or M24 bolts, and achieve sufficient rotation capacity by ensuring that the moment resistance is not governed by bolt or weld failure.

'Wind-moment design' de portiques de faibles hauteurs

Resumé

La publication présente des procédures pour le 'wind-moment design' de portiques qui conforme à la norme BS 5950-1. Dans cette méthode de dimensionnement, le portique est rendu isostatique en traitant les assemblages comme des rotules sous charges verticales et comme des encastrements sous charges horizontales (avec certains points supposés à moment nul). La publication donne des procédures de dimensionnement pour des portiques contreventés dans la direction de l'axe faible et pour des portiques sans contreventement. Les limitations de la méthode, qui sont peu différentes dans ces deux cas, sont expliquées. En particulier, il doit être mentionné que la méthode n'est recommandée que pour des cadres jusqu'à quatre niveaux.

Des procédures de dimensionnement à l'état ultime et en service sone expliquées, et deux exemples complets sont présentés. La publication donne des tables de résistance pour des assemblages standardisés qui sont reprises de la publication P207 Assemblages de constructions métalliques: assemblages rigides du SCI/ BCSA. Ces assemblages utilisent des plaques d'abouts courtes ou étendues et des boulons de nuance 8.8, M20 ou M24 et fournissent une capacité de rotation suffisante pour s'assurer que la résistance aux moments de flexion n'est pas conditionnée par la rupture d'un boulon ou d'une soudure.

'Wind-Moment-Berechnung' von Rahmen geringer Höhe

Zusammenfassung

Diese Publikation präsentiert Vorgehensweisen für die Berechnung von Rahmen unter Einwirkung von Momenten infolge Windlasten ("wind-moment frames") nach BS 5950-1. Bei dieser Methode wird das Tragwerk statisch bestimmt gemacht durch Annahme von gelenkigen Verbindungen unter vertikalen Lasten und biegesteifer Verbindungen unter horizontalen Lasten (mit gewissen angenommenen Momenten-Nullpunkten). Die Publikation zeigt Berechnungsweisen auf für Rahmen die bezüglich der schwachen Achse unverschieblich sind und für Rahmen die verschieblich sind. Die Grenzen der Methode, die sich für die beiden Fälle leicht unterscheiden, werden erläutert. Besonders sollte beachtet werden, daß die Methode nur für Rahmen geringer Höhe mit bis zu vier Geschossen empfohlen wird.

Zusätzlich zu den Berechnungsmethoden im Grenzzustand der Tragfähigkeit und Gebrauchstauglich-keit werden Berechnungsbeispiele für die beiden Fälle vorgestellt. Die Veröffentlichung reproduziert auch die Tabellen für Standard-Verbindungen aus der SCI/BCSA-Publikation P207 Verbindungen im Stahlbau: Momenten-Verbindungen. Diese Verbindungen haben bündige oder überstehende Stirnplatten mit Schrauben M20 oder M24 der Güte 8.8 und weisen ausreichende Rotationskapazität auf, ohne Schrauben- oder Schweißnahtversagen.

Progettazione per azioni orizzontali di telai in acciaio con modesto numero di piani

Sommario

Questa pubblicazione presenta le procedure per la progettazione di telai resistenti alle azioni orizzontali in accordo alla normativa BS 5950-parte 1. Sulla base di questo approccio progettuale, il telaio viene considerato isostatico con connessioni trave-colonna modellate a cerniera se soggetto alle azioni verticali, mentre, in presenza di forze orizzontali i nodi sono considerati rigidi (ipotizzando la presenza di cerniere localizzate in predeterminate zone della struttura). La pubblicazione fornisce le procedure di progetto sia per quei sistemi intelaiati che sono controventati nella direzione di minore rigidezza sia per quelli che non sono dotati di controventi nelle due direzioni principali. Per entrambe le tipologie strutturali sono definite e trattate nel dettaglio le differenti limitazioni del metodo. In particolare, si sottolinea che il metodo è applicabile soltanto per strutture di modesta altezza e con un massimo di quattro piani.

In aggiunta alle procedure di progetto relative agli stati limite sia di servizio sia ultimi, sono presentati alcuni esempi completi per le due tipologie strutturali in esame. La pubblicazione riporta anche le tabelle di resistenza per i collegamenti più comuni nei telai resistenti alle azioni orizzontali. Tali collegamenti, che sono considerati anche nella pubblicazione SCI/BCSA numero P207 Giunti in telai in acciaio: giunti in grado di trasferire azione flettente, sono realizzati con piatti saldati all'estremità della trave e bullonati alla colonna sia in spessore si trave, sia estesi oltre l'ingombro della trave. Viene fatto riferimento a bullonature realizzate con bulloni dal diametro di 20mm e 24mm di acciaio con classe di resistenza 8.8. Tali connessioni sono in grado di garantire una capacità rotazionale sufficiente affinché la resistenza del nodo all'azione flettente non sia governata dalle rotture dei bulloni o delle saldature.

Proyecto de pórticos bajos ante carga de viento

Resumen

Esta publicación presenta métodos para el proyecto de pórticos contraviento de acuerdo con BS 5950-1. En este método de proyecto. el pórtico se considera isostático al considerar articulación de las uniones ante cargas verticales y rígidas ante cargas horizontales (con hipótesis adicionales sobre la situación de los puntos de momento nulo). La publicación da métodos de proyecto tanto para pórticos arriostrados en la dirección del eje menor como para los que no tienen arriostramientos en ninguna dirección principal. Se explican las limitaciones del método que difieren ligeramente en ambos casos. Debe observarse en particular que el método solo es recomendable para pórticos bajos de hasta cuatro plantas.

Además de los métodos de proyecto para los estados límites de servicio y último se presentan ejemplos totalmente desarrollados en dos casos. La publicación también reproduce las tablas de existencia para uniones contraviento típicas tomadas de la publicación P207 de la SCI/BCSA Uniones en estructuras de acero: Uniones rígidas. Estas uniones usan suficiente capacidad de rotación controlando que la resistencia a flexión no esté controlada por la rotura de los pernos o de las soldaduras.

Dimensionering av ramverk mot vindlaster

Sammanfattning

Denna publikation presenterar metoder för dimensionering av ramar mot vindlaster enligt BS 5950-1. I dimensioneringsmetoden är ramen statiskt bestämd genom att knutpunkterna behandlas såsom ledat infästa vid vertikala laster och fast inspända vid horisontella laster (under antagande av vissa punkter med noll-moment). Publikationen ger dimensioneringsmetoder för ramar som är stagade i den veka axelns riktning och för ramar som inte har någon stagning i någondera av huvudriktningarna. Metodens begränsningar, vilka är något olika för de två fallen, förklaras. Speciellt bör det noteras att metoden endast rekommenderas för ramverk upp till fyra våningars höjd.

Utöver dimensioneringsmetoder för brott- och bruksgränsstadiet, redovisas även två helt genomarbetade exempel. Publikationen återger även hållfasthetstabellerna för standardiserade vindlastupptagande knutpunkter vilka finns i SCI/BCSA publikation P207 Joints in steel constructions: Moment connections. Dessa knutpunkter har icke utskjutande eller utskjutande ändplattor och M20 eller M24 bultar i hållfasthetsklass 8.8, och erhåller tillräcklig rotationskapacitet genom att tillse att böjmomentkapaciteten inte avgörs av bult- eller svetsbrott.

NOTATION

- $A_{\rm g}$ gross cross-sectional area of member
- $F_{\rm c}$ axial compression due to applied loads
- *h* storey height
- *H* horizontal force per bay
- *L* distance between levels at which both axes of the column section are restrained or, alternatively, the beam span
- $L_{\rm E}$ effective length of member
- *m* equivalent uniform moment factor
- *m* internal moment
- $M_{\rm b}$ buckling resistance moment
- $M_{\rm bs}$ buckling resistance moment for columns in simple multi-storey construction
- $M_{\rm x}$ applied end moment about the major axis
- $M_{\rm v}$ applied end moment about the minor axis
- $P_{\rm c}$ compressive resistance of member
- $p_{\rm y}$ design strength of steel
- $p_{\rm c}$ compression strength of column
- $r_{\rm v}$ radius of gyration about the minor axis
- *S* shear force in column
- V shear force in beam
- W horizontal load applied to frame
- Z_y elastic section modulus about the minor axis
- $\boldsymbol{8}_{\mathrm{LT}}$ equivalent slenderness of beam
- *8* slenderness of column

1 INTRODUCTION

When a steel frame is unbraced, it is usual to rely on the bending resistance and stiffness of the connections to resist wind forces. A simple design method, termed the *wind-moment* or *wind-connection* method, may be used to design such frames. The assumptions made in this method render the structure statically determinate and allow the structure to be analysed using simple manual techniques.

The design method proposed in this publication applies to low rise frames of four storeys or less and assumes that:

- C under vertical loads the connections act as simple nominally pinned connections (see Figure 1.1)
- C under wind loads the connections behave as nominally rigid joints. Points of contraflexure are assumed to occur at the mid-height of the columns and the mid-length of the beams (see Figure 1.2).

Figure 1.1 Frame assumptions for the wind-moment method

Figure 1.2 Internal moments and forces according to the wind-moment method

Procedures are given in this publication for the design of:

- C frames that are braced to prevent minor axis sway of the columns at each roof level and each floor level
- C frames that contain no sway bracing in either principal direction (subject to additional limits of application).

The first step in the design sequence is to design the beams for the ultimate limit state (ULS) fully factored vertical loads, assuming a nominal end fixity moment of 10%. The frame is then analysed under wind loads, with the assumption that the beam-to-column connections behave in a rigid manner. The internal forces and moments are then combined using the principle of superposition, and adopting appropriate load factors for each combination. Design for the ULS is completed by amending the initial section sizes and connection details, when necessary, so that they can withstand the combined effects.

Connections are required to resist the moments due to wind loading as well as the shear forces due to vertical loading. In reality, the connections may also attract significant moments due to the gravity loading, and they should have sufficient rotation capacity to be able to redistribute these extra moments from the connections into the spans. However, the ductility of the connections need not be a direct concern of the designer provided that standard connections with proven rotation capacity are used. Typical connections with sufficient ductility are given in the BCSA/SCI publication *Joints in steel construction: Moment connections*^[1]. Capacity tables for these standard *wind-moment* connections given in that publication are reproduced in Appendix D of this publication.

Second order effects due to frame sway, often referred to as P-) effects, are allowed for by using effective lengths for the columns that are greater than the lengths between floor levels. The need for complicated second order calculations is therefore avoided. The additional moments generated due to sway can be significant and for this reason the method is not recommended for high-rise buildings.

When checking the serviceability limit state, lateral deflections due to wind loading can be calculated using a manual method, as explained in the worked example.

1.1 Benefits of *wind-moment* design

The main advantages of this method from a designer's point of view are its simplicity and its suitability for manual calculations. The method is based on procedures familiar to those designing nominally pinned and braced structures on a regular basis. As the frame is assumed to be statically determinate, internal moments and forces are not dependent on the relative stiffnesses of the members. There is therefore no need for any iteration to redetermine moments and forces as member sizes are refined.

The major advantage of *wind-moment* frames from a construction viewpoint is the relative simplicity of the steelwork when compared with fully rigid construction. Much of the work carried out by steelwork contractors is concerned with making the connections, and it has been estimated that the fabrication and workshop handling costs associated with the connections can be as high as 50% of the total cost of the erected steelwork^[2]. Any method that allows the connections to be

simplified and therefore reduces fabrication input, can significantly reduce the cost of the erected steel frame. The type of connections that are adopted in *wind-moment* frames are simpler than those required for fully rigid construction, particularly for major axis connections.

1.2 Connections

As noted previously, the connections are assumed to be nominally pinned under vertical loading but are designed to resist moments when the frame is subject to lateral wind forces. It is therefore an essential requirement of the wind-moment method that the connections should be sufficiently ductile to accommodate large rotations. End plate connections can achieve sufficient ductility, provided that bolt or weld failure is avoided by appropriate detailing. In carrying out the background studies to justify the method given in this design guide, it has been assumed that the connections adopted will comply with the performance of the standard wind-moment connections detailed in Joints in steel construction: Moment connections^[1] and repeated in Appendix D of this publication. These connections are either flush or extended end plate details that generally require little or no stiffening of the column. A typical detail is illustrated in Figure 1.3. Windmoment connections should be symmetric in such a way as to provide the same moment resistance in both hogging and sagging. They therefore differ slightly in form from similar connections used in semi-continuous braced frames.

Figure 1.3 Typical wind-moment connection

Joints in steel construction: Moment connections^[1] provides typical details, background design information and capacity tables for a range of standard connections that satisfy the required performance criteria. It also provides a full explanation of these criteria for wind-moment connections. Key points concerning the connections are as follows (with definitions of the various terms given schematically in Figure 1.4):

- C The connections are *semi-rigid*; they possess a certain stiffness that is used primarily to limit the sway of the frame.
- C The connections are *partial strength*; they possess some moment resistance, which is however less than the moment resistance of the adjoining beam.
- C The connections are *ductile*; they can rotate as plastic hinges. Although the required rotation will vary for different frames, a value of 0.03 radians can be assumed to be sufficient for practical cases.

Figure 1.4 *Moment-rotation characteristics of a typical wind-moment connection*

In order to achieve these three characteristics, in standard *wind-moment* connections the end plates are thinner than those used in conventional fully rigid connections. Thin end plates are the most convenient and easily controlled means of achieving the required rotation because the end plate becomes the critical (i.e. weakest) connection component. However, it is important that the detailing of the standard connections given in Appendix D is adhered to strictly, as the choice of end plate thickness and bolt spacing in relation to the size and strength of the bolts, and of the welds, is crucial. If the end plate is too thin, both the stiffness and strength of the connection may be insufficient. If the end plate is too thick, the bolts or the welds may fail first, resulting in non-ductile behaviour.

1.3 Scope of this publication

1.3.1 Frame proportions

The wind-moment method has been validated by checking results for a broad range of low rise frames using non-linear finite element software $^{[3,4,5]}$. In theory, the method could be used for a wider range of frames than those covered by the limitations given below. In order to simplify the procedures and remain within the bounds of the validation study, however, the method described in this publication should only be used for frames that comply with the following requirements:

- C The geometry of the frame should be within the ranges shown in Table 1.1.
- C The width of each bay should be constant over the height of the frame.
- C The structure should be capable of being represented by a series of unbraced plane frames, each comprising a regular arrangement of orthogonal beams and columns.
- C Beam layouts should comply with one of the options shown in Figures 1.5, 1.6 and 1.7.

When frames comply with the limits given above, use of the wind-moment method as described in this publication will lead to sections and connection details that are no *weaker* than those shown to be necessary during the background studies of similar frames^[3,4,5]. This is an important point, and is the justification for the method described here.

Relative dimensions	Minimum	Maximum
Number of storeys	2	4
Number of bays	2	4*
Bay width (m)	4.5	12
Bottom storey height (m)	4.5	6
Storey height elsewhere (m)	3.5	5
Bay width: storey height (bottom storey)	0.75	2.5
Bay width: storey height (above bottom storey)	0.9	3
Greatest bay width: smallest bay width	1	2

 Table 1.1
 Proportions of frames suitable for use of the wind-moment method

* Frames may have more than 4 bays, but a core of 4 bays is the maximum that should be considered to resist the applied wind load. When adding non-active bays, the designer should remember that the notional horizontal loads applied to the core will increase.

Figure 1.5 Beam layout with floor spanning to major axis beams

Figure 1.6 Beam layout with floor spanning to secondary and minor axis beams

Figure 1.7 Beam layout with floor spanning to intermediate and major axis beams

1.3.2 Individual components

Individual frame components should comply with the following requirements in order for the frame design procedures given in this guide to remain valid:

- C The steel grade may be either S275 or S355 (design grade 43 or 50) but the same design grade should be used for all the members in a given frame. For frames that are unbraced in the *minor axis* direction all sections should be S275 steel (grade 43).
- ^C Horizontal members should be hot rolled Universal Beam or Universal Column sections, and should be able to meet the *plastic* or *compact* (Class 1 or 2) classification requirements of BS 5950-1^[6]. The inclusion of compact sections is a relaxation of the limits in SCI publication P082 *Wind-moment design for unbraced frames*.
- C Members should not be composite [7].
- C Vertical members should be hot rolled Universal Column sections and should be able to meet the *plastic* or *compact* (Class 1 or 2) classification requirements of BS 5950-1.
- C Connections should be flush or extended end plates in accordance with the recommendations given for *wind-moment* connections in Appendix D.
- C Columns should be rigidly connected to the foundations, by bases that are designed to resist moments.

1.3.3 Loading

Values of loading should not exceed the limits given in Table 1.2.

Wind loads may be derived using either CP3: Chapter V: Part $2^{[8]}$ or BS 6399- $2^{[9]}$. The resulting (unfactored) horizontal force at each floor level should not be taken as less than 10 kN. This level of loading corresponds to a wind speed of 37 m/s according to CP3 (for a gust) or 20 m/s according to BS 6399 (for an hourly mean).

	Minimum	Maximum
Dead load on floors (kN/m ²)	3.5	5
Imposed load on floors (kN/m ²)	4	7.5
Dead load on roof (kN/m ²)	3.75	4
Imposed load on roof (kN/m ²)	1.5	1.5
Wind loads (kN)	10	40

Table 1.2Frame loading limits

The designer can determine rapidly whether the wind-moment method will be appropriate for a given frame by using the flowchart provided in Figure 1.8. If the frame is likely to be controlled by serviceability limit state (SLS) sway deflections, an alternative design method should be used.

Figure 1.8 Flow chart to determine the suitability of the wind-moment method for a given major axis frame

2 DESIGN OF MAJOR AXIS FRAMES

2.1 Range of application

The wind-moment design procedures given in this Section apply to frames that are effectively braced at the roof and each floor level to prevent sway about the minor axes of the columns but are unbraced about the major axes of the columns (see Figure 2.1). These are referred to as *major axis* frames for simplicity. The prevention of sway about the minor axes can be achieved by cross bracing or by other systems such as attachment to a rigid core.

Figure 2.1 Plane frames braced against out-of-plane sway

Frame layouts, component details and loading should comply with the limits given in Section 1.3.

2.2 Global analysis at the ultimate limit state

2.2.1 Load combinations

The following load combinations, using load factors from BS 5950-1^[6], should be considered:

 $1.4 \times \text{Dead load} + 1.6 \times \text{Imposed load} + 1.0 \times \text{Notional horizontal forces}$ $1.2 \times \text{Dead load} + 1.2 \times \text{Imposed load} + 1.2 \times \text{Wind load}$ $1.4 \times \text{Dead load} + 1.4 \times \text{Wind load}$

The notional horizontal forces should be taken as 0.5% of the factored dead plus imposed loads (BS 5950-1:1990: Clauses 5.6.3, 5.1.2.3)^[6].

Pattern loading should be considered in addition to full gravity load on all beams.

2.2.2 Internal moments and forces due to vertical load

The internal moments and forces due to vertical load should be calculated in accordance with the requirements of BS 5950-1 for simple construction, with some slight modifications, as follows:

Beams

When calculating the moments in the beams due to vertical load, allowance should be made for the partial fixity of the beam to column connection by taking an end restraint moment equal to 10% of the free bending moment in the beam (i.e. 10%

of the sagging moment applied to the beam, assuming it to be simply supported). Consequently, the maximum sagging moment in the beam may be taken as 90% of the value calculated for a simply supported beam.

Columns

The moments in the columns due to vertical load alone are given by the algebraic sum of:

- C The end restraint moments from the beams, which are taken as equal to 10% of the free bending moments in the beams (as described above).
- C The moments due to eccentricity of the beam reactions, assuming that the reactions act 100 mm from the faces of the columns.

Account should be taken of the effects of pattern loading, if appropriate.

The net moment applied to a column at any one level should be divided between the column lengths above and below the level in proportion to the stiffness of those lengths (EI/L). When the ratio of stiffnesses does not exceed 1.5, the moment may be divided equally. These moments should be assumed to have no effect above and below the level at which they are applied.

Axial loads should be calculated considering both pattern loading and full loading, and combined with the appropriate moments.

Connections

The moments in the connections due to vertical loads should be calculated from the end restraint moments on the beams, as described above.

The shear forces in the connections due to vertical loads are given by the end reactions of the beams.

2.2.3 Internal moments and forces due to horizontal loads

The horizontal loading consists of the wind loading and the notional horizontal forces, as required by BS 5950-1. The notional forces, which are proportional to the floor loading, are used to model the effects of imperfections and lack of verticality of the members, and to ensure a minimum level of frame stability.

The frame should be analysed using the *portal method* (as described in Appendix A) or another established method to determine the applied forces and moments due to horizontal loads.

The portal method is based on the following assumptions:

- C Horizontal loads are applied at floor levels.
- C There is a point of contraflexure at the mid height of each column.
- C There is a point of contraflexure at the mid length of each beam.
- C Each bay acts as a simple portal, and the total horizontal load is divided between the bays in proportion to the span of each bay.

The bending moments resulting from these assumptions are shown in Figure 2.2. As the horizontal loads may reverse, the total moment at any point should be calculated by addition of the numerical values of the component moments.

Figure 2.2 Internal moments according to the portal method

2.3 Design of beams at the ultimate limit state

Sections should be either Universal Beam or Universal Column sections that are classified as *plastic* or *compact* according to BS 5950-1.

The design moment capacity should be limited to 90% of the plastic moment resistance of the section in order to provide sufficient rotational restraint to the columns (BS 5950-1:1990: Clause 4.7.7). Because a nominal allowance of 10% is made for the partial fixity of the beam to column connection, the following relationship should therefore be satisfied:

 $0.9 M \# 0.9 p_{\rm v} S_{\rm x}$

or alternatively $M \# p_v S_x$

- where M is the applied moment due to vertical loading, assuming the beam is simply supported
 - $p_{\rm v}$ is the design strength of the steel
 - $S_{\rm x}$ is the plastic modulus of the beam about the major axis.

For parts of beams that are effectively unrestrained according to BS 5950-1, the following additional requirement should be satisfied;

 $\overline{M} \# M_{\rm b}$

- where \overline{M} is the equivalent uniform moment (see BS 5950-1:1990: Clause 4.3.7.2)
 - $M_{\rm b}$ is the lateral torsional buckling resistance moment (see BS 5950-1:1990: Clause 4.3.7.3).

In practical cases of beams directly supporting slabs, the beam is fully restrained by the slab, so there is no need to check lateral torsional buckling resistance.

2.4 Design of columns at the ultimate limit state

Sections should be Universal Column sections that are classified as *plastic* or *compact* according to BS 5950-1.

Effective lengths for compression resistance (P_c)

For in-plane buckling (i.e. buckling about the major axis of the section), the effective length $L_{\rm E}$ should be taken as 1.5 L.

For out-of-plane buckling (i.e. buckling about the minor axis), the effective length $L_{\rm E}$ should be taken as 1.0 L when the columns are braced to prevent minor axis sway at each floor and roof level. With some bracing layouts, for example one in which the mid-height of the columns is also restrained, a shorter effective length could be envisaged.

Equivalent slenderness for lateral torsional buckling

The slenderness considered when calculating the lateral torsional buckling resistance M_b of the column should be taken as 0.5 (L/r_y) , where L is the length of the columns between restraints about both axes and r_y is the radius of gyration about the minor axis.

Interaction between moments and forces

The following relationship should be satisfied:

 $F_{\rm c} / P_{\rm c} + M_{\rm x} / M_{\rm bs} + M_{\rm y} / p_{\rm y} Z_{\rm y} \# 1.0$

- where: F_c is the applied axial load due to vertical loading, or a combination of vertical loads and wind loads
 - $M_{\rm x}$ is the applied moment about the major axis due to appropriate combinations of vertical loading, notional horizontal forces and wind loads
 - M_y is the applied moment about the minor axis due to appropriate combinations of vertical loading
 - $p_{\rm v}$ is the design strength of steel
 - Z_v is the elastic modulus about the minor axis
 - $P_{\rm c}$ is the compressive resistance

 $M_{\rm bs}$ is the lateral torsional buckling resistance moment for simple design

 $(P_{\rm c} \text{ and } M_{\rm bs} \text{ should be calculated in accordance with BS 5950-1 using the effective lengths given above).}$

2.5 Design of connections at the ultimate limit state

The moments and forces applied to the connections due to vertical and horizontal loading are described in Section 2.2.

Appropriate connections should be chosen by comparing the moments and forces obtained from the analysis with the tabulated capacities given in Appendix D for the standard wind-moment details.

2.6 Column base design

Columns should be rigidly connected to the foundations by bases designed in accordance with the usual practice for nominally rigid details. Foundations should be designed to resist the combinations of axial load and bending moment that are given by the global frame analysis. Design guidance on column bases may be found in *Joints in steel construction: Moment connections*^[1].

2.7 Serviceability limit state

BS 5950-1 lists the various requirements for design at the serviceability limit state. The only requirement that requires specific consideration in this guide is that of horizontal deflection (sway).

The deflection limits given in BS 5950-1 are not intended to be compared with the true deflections of the final structure but rather with those deflections calculated for the bare frame. They are based on practical experience and are values that, in general, will ensure that the resistance and in-service performance of the structure are not impaired. Examples of poor performance are visible deflections and cracking of brittle cladding materials and finishes. A sensible limit on horizontal deflection for low-rise frames is height/300. This limit is given in BS 5950-1.

2.7.1 Beam deflections

The vertical deflections of beams should generally be calculated using unfactored imposed loads assuming that the beams are simply supported. The limits on imposed load deflection should generally be in accordance with BS 5950-1: span/360 for beams carrying plaster or other brittle finishes.

If necessary, it may be possible to allow for the beneficial effects of the restraint offered by the connections when calculating beam deflections. Guidance may be found in *Design of semi-continuous braced frames*^[10].

2.7.2 Horizontal deflections

The frame should be checked for sway using the unfactored wind loads and, where appropriate, any asymmetric loading that may cause sway.

Full analysis of frames taking into account connection flexibility shows that frames with *wind-moment* connections deflect significantly more under horizontal loading than those with fully rigid connections. This increased sway can be allowed for by the designer by means of a simple amplification factor applied to the sway deflections, as described below.

The simple graphical method outlined in Appendix B will generally be sufficiently accurate for calculating rigid frame deflections, although it should be noted that this method does not predict sway due to asymmetric vertical loads. The calculated *rigid frame* deflections should then be increased by 50% (i.e. multiplied by a factor of 1.5) as an approximate allowance for the flexibility of standard *wind-moment* connections (provided that the average bay width is at least 6 m). For an average bay width of 4.5 m, the deflections obtained from the rigid frame analysis should be multiplied by a factor of 2. For bay widths between 4.5 m and 6 m, linear interpolation between 2.0 and 1.5 should be used.

Where accurate calculation of deflections is critical, for example to ensure satisfactory installation or performance of the cladding, the above method may not provide a sufficiently accurate estimate of the frame sway, and a more detailed analysis taking explicit account of the flexibility of the connections may be required. Such methods are generally more appropriate to analysis by computer and are therefore not dealt with further in this publication.

If the deflections are unacceptable, either member sizes can be increased or connections can be replaced by rigid details and the frame redesigned as a fully rigid frame.

3 DESIGN OF MINOR AXIS FRAMES

The recommendations given in this Section apply to frames that are not braced in either principal direction. The rules concern primarily the *minor axis* frames (see Figure 3.1) although it should be noted that the *major axis* frame design will also be affected by the absence of bracing. A worked example illustrating the procedure to be adopted may be found in Appendix C.

Unbraced minor axis frames

Figure 3.1 Frame unbraced about both column axes

The *wind-moment* design procedures outlined in Section 2 for *major axis* frames should be modified for this case, as follows:

- C The beams framing into the minor axis of the columns should be checked to ensure that they provide adequate stiffness for frame stability.
- C Columns must be checked to ensure that they provide adequate stiffness about their minor axis to ensure frame stability.
- C The connections to the minor axis should be in accordance with the provisions of Section 3.1.3.
- C Minor axis frames must be checked to ensure that, at the serviceability limit state, deflections satisfy the limits given in BS 5950-1.

Frames and components should also comply with the requirements of Section 1.3.

3.1 Design at the ultimate limit state

The frames should be designed to resist loading as discussed in Section 2.2, taking into account the additional moments about the minor axis of the columns due to the notional horizontal forces and wind loads. In addition, the stiffnesses of the beams used in the *minor axis* frames must satisfy certain requirements with respect to the column stiffnesses (see Section 3.1.2). As this check of relative stiffnesses will often govern the choice of section size, particularly if the applied gravity load on the beams is small, it is recommended that the following design procedure is adopted:

- C Design the columns using effective lengths as given in Section 3.1.1.
- C Size the beams for the *minor axis* frames so that the sum of the major axis stiffnesses of the beams meeting at a node is not less than the sum of the minor axis stiffnesses of the columns meeting at that node (see Section 3.1.2).

- C Check the minor axis beams for appropriate combinations of gravity load, notional horizontal forces and wind load.
- C Size the beams for the major axis frames using the procedures given in Section 2.

3.1.1 Design of columns

The forces and moments in the columns should be determined in the same way as for *major axis* frames (see Section 2.2), except that when considering pattern loading, an additional pattern that would induce the maximum moment about the minor axis should also be considered. Note that the wind loads and notional horizontal forces should only be considered to act in one direction at a time. It is generally more critical when these forces act on the *minor axis* frames, producing bending about the minor axis of the columns.

The design of the columns should be carried out using the procedures given in Section 2.4, except that the slenderness used to calculate the compressive resistance (P_c) about both the major and the minor axes of the columns should be based on an effective length of 1.5L.

3.1.2 *Minor axis* beam design

Minor axis *beam stiffness*

In order to ensure that the minor axis beams have adequate stiffness to stabilise the frame, the relative beam to column stiffnesses should satisfy the following criteria (with reference to Figure 3.2):

At node 1:	$(I_{\rm bx})_1 / L_1$	\$	$(I_{\rm cy})_1 / h_1$				
At node 2:	$(I_{\rm bx})_2 / L_1$	\$	$(I_{\rm cy})_1 / h_1$	+	$(I_{\rm cy})_2 / h_2$		
At node 3:	$(I_{\rm bx})_3 / L_3$	\$	$(I_{\rm cy})_2 / h_2$	+	$(I_{\rm cy})_3 / h_3$		
At node 4:	$(I_{\rm bx})_4 / L_4$	\$	$(I_{\rm cy})_3 / h_3$	+	$(I_{\rm cy})_4 / h_4$		
At node 5:	$(I_{\rm bx})_1 / L_1$	+	$(I_{\rm bx})_5 / L_2$	\$	$(I_{\rm cy})_5 / h_1$		
At node 6:	$(I_{\rm bx})_2 / L_1$	+	$(I_{\rm bx})_{\rm 6} / L_2$	\$	$(I_{\rm cy})_5 / h_1$	+	$(I_{\rm cy})_{\rm 6} / h_2$
At node 7:	$(I_{\rm bx})_3 / L_1$	+	$(I_{\rm bx})_7 / L_2$	\$	$(I_{\rm cy})_6 / h_2$	+	$(I_{\rm cy})_7 / h_3$
At node 8:	$(I_{\rm bx})_4 / L_1$	+	$(I_{\rm bx})_{\rm 8} / L_2$	\$	$(I_{\rm cv})_7 / h_3$	+	$(I_{\rm cv})_8 / h_4$

and similarly across the rest of the frame. The positions of nodes 1 to 8 are shown in Figure 3.2. I_{bx} is the second moment of area of a beam about its major axis. I_{cy} is the second moment of area of a column about its minor axis. The subscripts 1 to 8 refer to various beam and column lengths as shown in Figure 3.2.

Although issues of relative stiffness are also relevant to *major axis* frames, an explicit check as described above is not necessary as the magnitude of vertical load applied to these beams ensures that they are adequately stiff for practical cases.

Figure 3.2 Notation used to define minimum beam stiffness requirements

Minor axis beam resistance

Beams should be designed for the moments and shears that arise due to appropriate combinations of vertical load, wind loads and notional horizontal forces. When the beam layout is as shown in Figures 1.6 and 1.7, gravity loading will generally govern the size of the *minor axis* beams. For a beam layout as shown in Figure 1.5, however, the gravity loading on the beams will be negligible, and horizontal loading will govern the required strength of the *minor axis* beams. In such cases, beam stiffness requirements are likely to dictate the final choice of section size.

For any beam layout, the plastic resistance and the lateral torsional buckling resistance of the beams framing into the minor axis should be calculated using the procedures given in Section 2.3.

3.1.3 Connection design

Minor axis connections must be detailed so that the following criteria are satisfied:

- C The column side components should be relatively stiff so that they do not add significantly to the connection flexibility.
- C Access can be gained to all welds, minor axis connection bolts and major axis connection bolts.
- C Connection moment resistance is not governed by weld or bolt strength.

One potential way of detailing the minor axis connections is shown schematically in Figure 3.3. Standard *beam side* detailing is adopted in order to achieve the necessary flexibility and ductility, and doubler plates are used to provide the necessary web stiffness and strength. The plates are needed to enable moment transfer into the column without the column web simply distorting locally (although it may be difficult to transfer substantial moments with this type of detail). Beams may require notching depending on the relative dimensions of the members. Although it may be possible to achieve the necessary stiffness and strength with a doubler plate on one side only, attention should be paid to the thickness of the plate(s) to ensure there is no clash with the *major axis* bolts.

Figure 3.3 Minor axis connection into a stiffened column web

Specific weld requirements may differ from those shown in Figure 3.3 but it should be noted that the structural welds must be designed to avoid premature, non-ductile failure. According to EC3, this means designing the welds in an unbraced frame to be 70% over-strength. British practice suggests that full strength welds are sufficient^[1].

Alternative connection details are currently being considered by The Steel Construction Institute and it is envisaged that further guidance will be published once a validatory test programme has been completed.

3.2 Design at the serviceability limit state

The vertical deflection of beams framing into both the major and minor axes of the columns should be checked (see Section 2.7.1). Sway deflections about both the major axis and the minor axis of the columns should be calculated using the procedures given in Section 2.7.2, and compared with a limit of 1/300 of the storey height in each storey.

REFERENCES

- 1. THE BRITISH CONSTRUCTIONAL STEELWORK ASSOCIATION/THE STEEL CONSTRUCTION INSTITUTE Joints in steel construction: Moment connections (SCI P207) BCSA/SCI, 1995
- GIRARDIER, E.V. The role of standardised connections New Steel Construction, Vol. 1, No. 2, February 1993, pp. 16-18
- 3. ANDERSON, D. and KAVIANPOUR, K. Analysis of steel frames with semi-rigid connections Structural Engineering Review, Vol. 3, 1991
- BROWN, N.D., ANDERSON, D. and HUGHES, A.F.
 Wind-moment steel frames with standard ductile connections Civil Engineering Research Report CE61, University of Warwick, 1999 (Submitted as a paper to the Journal of Constructional Steel Research)
- TAHIR, M.Md. and ANDERSON, D. Wind-moment design of unbraced minor axis steel frames Civil Engineering Research Report CE63, University of Warwick, 1999 (Submitted as a paper to the Structural Engineer)
- BRITISH STANDARDS INSTITUTION
 BS 5950: Structural use of steelwork in building
 Part 1:1990: Code of practice for design in simple and continuous construction: hot rolled sections
 BSI, 1990
- HENSMAN, J. and WAY, A. (SCI P264) Wind-moment design of unbraced composite frames The Steel Construction Institute, 2000
- BRITISH STANDARDS INSTITUTION CP3: Basic data for the design of buildings Chapter V: Loading Part 2: 1972: Wind loads BSI, 1972
- 9. BRITISH STANDARDS INSTITUTION BS 6399: Loading for buildings Part 1: 1984: Code of practice for dead and imposed loads Part 2: 1995: Code of practice for wind loads Part 3: 1988: Code of practice for imposed roof loads BSI
- 10. COUCHMAN, G.H.
 Design of semi-continuous braced frames (SCI P183) The Steel Construction Institute, 1997

- Steelwork design guide to BS 5950: Part 1: 1990
 Volume 1: Section properties and member capacities (5th Edition) (SCI P202)
 The Steel Construction Institute, 1997
- WOOD, R.H. and ROBERTS, E.H. A graphical method of predicting sidesway in the design of multi-storey buildings Proceedings of the Institution of Civil Engineers Part 2, Vol 59, pp. 353-372, June 1975
- ANDERSON, D.
 Design of multi-storey steel frames to sway deflection limitations Steel framed structures: Stability and strength (ed. R. Narayanan), pp. 55-80 Elsevier, 1985
- 14. THE BRITISH CONSTRUCTIONAL STEELWORK ASSOCIATION/THE STEEL CONSTRUCTION INSTITUTE Joints in simple construction Volume 1: Design Methods (2nd Edition), 1993 (SCI P205) Volume 2: Practical Applications, 1992 (SCI P206)

SCI-P263 Wind-moment Design of Low Rise Frames

APPENDIX A PORTAL METHOD OF ANALYSIS

A.1 Introduction

The forces and moments in a multi-storey, multi-bay wind-moment frame can be determined by simple manual calculation using the so-called portal method. The wind and notional horizontal forces are shared between the bays according to the relative bay widths, and the forces in the beams and columns are calculated for this distribution of loading. A detailed explanation is given below for part of a multi-storey two-bay frame.

A.2 Distribution of horizontal load

Each bay is assumed to act as a single portal and the total horizontal load is divided between the bays in proportion to their spans. For a two bay frame, the loads in the two separate bays (as shown in Figure A.1b) are given by:

$$H_{1,1} = L_1 W_1 / (L_1 + L_2); \qquad H_{2,1} = L_2 W_1 / (L_1 + L_2)$$

$$H_{1,2} = L_1 W_2 / (L_1 + L_2); \qquad H_{2,2} = L_2 W_2 / (L_1 + L_2)$$
(A.1)

Figure A.1 Distribution of horizontal load

A.3 Calculation of internal forces in columns

The forces acting on a part of one bay and the pin locations assumed in windmoment design are shown in Figure A.2a.

The forces acting on the portion of the bay above the points of contraflexure at A and D are shown in Figure A.2b. The horizontal force H_1 is assumed to be divided equally between the two columns. Thus

$$S_1 = H_1/2 \tag{A.2}$$

The vertical forces F_1 can be found by taking moments about the point of contraflexure at either A or D:

$$F_1 L = H_1 h_1 / 2$$

which gives:

Figure A.2 Internal forces in columns

The forces acting on the portion ABCDEG of the bay are shown in Figure A.2c. It follows from the assumption above that:

$$S_2 = (H_1 + H_2)/2$$
 (A.4)

Taking moments about the point of contraflexure at either C or G:

$$F_2 L = H_2 h_2 / 2 + 2 S_1 (h_1 + h_2) / 2 + F_1 L$$

Substituting for S_1 and F_1 and re-arranging:

$$F_2 = H_1 h_1 / L + (H_1 + H_2) h_2 / (2L)$$
(A.5)

A.4 Calculation of internal moments

It is clear from Figure A.2b that the internal moment at the head of each column is given by:

$$M_1 = S_1 h_1 / 2$$

Substituting for S_1 :

$$M_1 = H_1 h_1 / 4 \tag{A.6}$$

For equilibrium, the moment at each end of the roof beam is also equal to M_1 . The bending moment diagram is shown in Figure A.3a.

Figure A.3 Internal moments

Referring to Figure A.2c, the internal moment in each upper column at B and E is also M_1 . The corresponding moment in the lower columns is given by:

$$M_2 = S_2 h_2 / 2$$

Substituting for *S*₂:

$$M_2 = (H_1 + H_2) h_2 / 4 \tag{A.7}$$

For equilibrium at B and E, the internal moment at each end of the beam BE equals $(M_1 + M_2)$, as shown in Figure A.3b.

A.5 Calculation of shear forces in beams

As a point of contraflexure is assumed at the mid-length of each beam (Figure A.3), the shear force in the roof beam is given by:

$$V_1 = M_1 / (L/2)$$

Substituting for M_1 :

$$V_1 = H_1 h_1 / (2 L) \tag{A.8}$$

Similarly, the shear force V_2 in beam BE is given by:

$$V_2 = (M_1 + M_2)/(L/2)$$

Substituting for M_1 and M_2 :

$$V_2 = H_1 (h_1 + h_2) / (2L) + H_2 h_2 / (2L)$$
(A.9)

A.6 Forces and moments in an internal column

These are obtained by summing the values calculated for adjacent bays on either side of the column.

It is found that the vertical forces in an internal column due to horizontal loading are zero.

APPENDIX B WORKED EXAMPLE: MAJOR AXIS FRAME

B.1 Introduction

The design example given in this Appendix is for a frame that is braced out of plane in order to prevent sway about the minor axis of the columns.

Calculations are given to demonstrate the following aspects of the design rules:

- C compliance with the scope of the method
- C framing and loads
- C wind analysis
- C notional horizontal forces and analysis
- C beam design
- C column loads
- C internal column design
- C external column design
- C connections design
- C serviceability limit state.

B.1.1 Compliance

The frame in this example forms part of a steel structure that conforms to the frame layout specified in Section 1.3 above. In particular:

- C The frame is effectively braced against sway about the minor axis of the columns at roof level and each floor level.
- C The floor layout comprises only primary beams, with flooring and roofing spanning as shown in Figure 1.5.

B.1.2 Frame dimensions

The frame dimensions conform to the range of application specified in Section 1.3:

bay width : storey height (bottom storey)	=	$\frac{6}{5}$	=	1.2
bay width : storey height (above bottom storey)	=	$\frac{6}{4}$	=	1.5
greatest bay width : smallest bay width	=	$\frac{6}{6}$	=	1.0
storey height (bottom storey)	=	5 m	<	6 m
storey height (other storeys)	=	4 m	<	5 m

B.1.3 Loading

The following unfactored loading conforms to the range of application given in Section 1.3.3:

dead load on roof	=	4.00 kN/m^2 (between 3.75 and 4.0 kN/m^2 , OK)					
imposed load on roof	=	1.50 kN/m ² (equal to 1.5 kN/m ² , OK)					
dead load on floor	=	4.50 kN/m ² (between 3.5 and 5.0 kN/m ² , OK)					
imposed load on floor	=	5.00 kN/m ² (between 4.0 and 7.5 kN/m ² , OK)					
wind forces (see Figure B.1) equate to a basic wind speed that is not less than 37 m/s (to CP3: Chapter V: Part 2).							

B.1.4 Design

The members have been designed using the rules given in BS 5950-1:1990^[3], with additional requirements as specified in this publication.

Member capacities were obtained directly from the capacity tables given in the SCI publication *Steelwork design guide to BS 5950: Part 1: 1990 - Volume 1: Section properties and member capacities*^[11].

The Steel	מחח	Job No:	PUB 263		Page	<i>1</i> of	21	Rev A
Constructio	n <u>///</u>	Job Title	tle Design example 1					
Institute		Subject Framing and loads						
Silwood Park, Asco Telephone: (01344	ot, Berks SL5 7QN) 623345			1				
Fax: (01344) 6229	Fax: (01344) 622944			Made by	PRS		Date	Dec 1998
CALCULATIO	ON SHEET			Checked by	(БC	Date	Jan 1999
B.2 Framing o	and loads							
16.6 kN —>				4 0				
17.0 kN —>				*				
14.2 kN —>				4.0				
13.0 kN —>				4.0				
				5.0				
⊥ 		 €.0		_ Y				
Frames located	at 6.0 m centres l	ongitudin	ally					
Figure B.1 Fra	me arrangement a	ind applie	d wind loads					
<u>Roof</u>								
Dead load	4.0 kN/m ²	24.0 k l	N/m					
Imposed load	1.5 kN/m ²	9.0 kN	/ m					
<u>Floors</u>								
Dead load	$4.5 \ kN/m^2$	27.0 k l	N/m					
Imposed load	$5.0 \ kN/m^2$	30.0 k l	N/m					

The Steel	[][][]	Job No: PUB	263	Page $oldsymbol{3}$ of	21	Rev $oldsymbol{A}$
Constructi	on <u>\\</u> _	Job Title Desi	gn example 1			
Institute		Subject Wind	l analysis			
Silwood Park, As Telephone: (0134	cot, Berks SL5 7QN 14) 623345				-	
Fax: (01344) 622	2944	Client SCI	Made by	PRS	Date	Dec 1998
CALCULAT	ION SHEET		Checked by	GC	Date	Jan 1999
16.6 kN → F			4.16 kNm			
			12.6 kNm			
17.0 kN						
14.2 kN			20.4 kNm			
			31.0 kNm			
13.0 kN —>	/ / /					
Figure B.3 Fi	ame analysis under	r wind loads (be	ams)			
Table B.3 Be	ending moments in	the beams due t	o wind loads			
			I	_		
Floor level	Bending moment in (kNn	external columns n)	Bending moment in beams (kNm)	ı		
	Upper column	Lower column	1			
Roof	-	4.16	0.0 + 4.16 = 4.16			
3	4.16	8.4	4.16 + 8.40 = 12.0	5		
2	8.4	12	8.40 + 12.0 = 20.4	4		
1	12	19	12.0 + 19.0 = 31.0	,		
N.B. Values	are UNFACTOREL)				
B.4 Notional	l horizontal forces d	and analysis				
Notional horiz	contal force = 0.00	5 (1 4 Doad + 1	6 Imposed)			
ivononai noriz	oniai jorce – 0.00	5 (1.4 Deuu 1	.o Imposeu)			
Roof H =	$0.005 (1.4 \times 2)$	4 + 1.6 × 9) ×	24 = 5	5.76 kN		
Floor H =	$0.005~(1.4 \times 2$	$7 + 1.6 \times 30$)	$\times 24 = 1$	10.3 kN		

The Steel	Job No:	PUB 263		Page	of of	21	Rev $oldsymbol{A}$
Construction	Job Title	Design exa	mple 1				
Institute	Subject	Beam desig	n				
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345							
Fax: (01344) 622944	Client	SCI	Made by	PR	S	Date	Dec 1998
CALCULATION SHEET			Checked by	G	2	Date	Jan 1999
B.5 Beam design							
B.5.1 Roof beam							
UDL 6.0							
Figure B.7 Roof beam							
<u>Ultimate limit state</u>							
Dead load plus imposed loading							
Design load for ULS: $W = (1.4)$	4 × 24 +	1.6 × 9) ×	6 = 2	288 kN			Sheet 1
Taking advantage of the 10% rest	traint mon	nent at the en	nd of the be	eams			
The maximum moment at the cen	tre of the	span					
$M = \frac{0.9 \ WL}{8} \cdot \frac{0.9 \times 24}{8}$	<u>88 × 6</u>		= 1	194 kNn	ı		Section 2.3
The maximum shear force at the	end of the	e span					
$F_y = \frac{W}{2} \cdot \frac{288}{2}$			= 1	144 kN			
<u>Try 305 × 165 × 54 UB S275 ste</u>	eel						
Section is Class 1 plastic					OK		
The beam is fully restrained.							
Moment capacity (M_{cx})							
In order to provide directional result limited to 0.9 M_{cx} .	straint to	the columns,	the momen	nt capac	ity is		Section 2 3
		T			077		D A 11
$0.9 M_{cx} = 0.9 \times 233 =$	210 KN	m > 194 kN	т		UK		Kef 11

The Steel	Job No:	PUB 263		Page 6	of 21	Rev A
Construction	Job Title	Design exa	mple 1			
Institute	Subject	Beam desig	n			
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345			1			
Fax: (01344) 622944	Client	SCI	Made by	PRS	Date	Dec 1998
CALCULATION SHEET			Checked by	GC	Date	Jan 1999
Shear capacity (P_v)						
$P_v = 405 \ kN$		> 144 kN		0	K	R ef 11
Dead load plus wind loading						
Design moment at end of beam d	ue to wind	$d = 1.4 \times 4$.2 = 5	5.9 kNm		
By inspection, this load combinat	ion not cr	ritical				
Dead load plus imposed load plus	wind loa	<u>ding</u>				
Design moment at end of beam d	ue to wind	$d=1.2\times 4.$	2 = 5	5.0 kNm		
By inspection, this load combinat	ion not cr	ritical				
<u>Serviceability limit state</u>						
Design imposed load for SLS:	<i>W</i> =	= 9.0 × 0	6 = 5	54 kN		Sheet 1
Imposed load deflection of beam	(assuming	g simply suppo	orted)			
$*_{I} = \frac{5 \times 54 \times 600}{384 \times 205 \times 11700}$	$\frac{100^3}{10^3}$	' 6.3 <i>mm</i> ' -	<u>Span</u> 950	0	K	
<u>Use 305 × 165 × 54 UB S275 st</u>	<u>eel</u>					
B.5.2 Floor beam						
/ UDL						
▲ 60 ▲						
< →						
Figure B.8 Floor beam						
<u>Ultimate limit state</u>						
Dead load plus imposed loading						
Design load for ULS: $W = (1)$.4 × 27 ·	+ 1.6 × 30)	$\times 6 = 5$	515 kN		Sheet 1

The Steel	Job No:	PUB 263		Page	7 of	21	Rev A
Construction	Job Title	Design exa	mple 1				
Institute	Subject	Beam desig	gn –				
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345	Client	SCI	Mada hu	ות	20	Data	Dec 1009
CALCULATION SHEFT	Client	501	Checked by	 	$\frac{1}{C}$	Date	Dec 1998 Ian 1999
			chocked by	0	C	Duto	5un 1777
Taking advantage of the 10% res	traint moi	ment at the er	nd of the be	eam			
The maximum moment at the cen	tre of the	span					
$M = \frac{0.9 \ WL}{8} \cdot \frac{0.9 \times 5}{8}$	<u>15 × 6</u>		= 3	347 kNi	n		
The maximum shear at the end o	f the span	ı					
$F_{v} = \frac{W}{2} \cdot \frac{515}{2}$			= 2	257 kN			
<u>Try 406 × 178 × 74 UB S275 ste</u>	eel						
The section is Class 1 plastic.							
The beam is fully restrained.							
Moment capacity (M_{cx})							
In order to provide directional results M_{cx} .	straint to	the columns,	the momer	nt capa	city is		
$0.9 M_{cx} = 0.9 \times 413 =$	372 kN	Nm > 347 kN	m		ОК		Ref 11
Shear capacity (P_v)							
$P_{v} = 647 \ kN$		> 257 kN	7		OK		Ref 11
Dead load plus wind loading							
Design moment at end of beam de	ue to wind	$d = 1.4 \times 3$	31.0 = 4	43.4 kN	m		Table B.3
By inspection, this load combinat	ion not ci	ritical					
Dead load plus imposed load plus	wind loa	<u>ding</u>					
Design moment at end of beam d	ue to wind	$d=1.2\times 31$	1.0 = 3	37.2 kN	m		Table B.3
By inspection, this load combinat	ion not ci	ritical.					
Serviceability limit state							
Design imposed load at SLS:	W	= 30 × 6	= 1	180 kN			Sheet 1

The Ste	el			b No: Pl	U B 263		Page	8	of	21	Rev $oldsymbol{A}$
Constru	iction		ol Z	b Title $D\epsilon$	esign exc	mple 1					
Institut	е		Su	^{ibject} In	ternal co	olumn d	lesign				
Silwood Par Telephone:	k, Ascot, (01344) 6	Berks SL5 7QN 23345	N			1				1	
Fax: (01344) 622944	Ļ	Cli	ient SC	CI .	Made by	/	PRS		Date	Dec 1998
CALCUL	ATION	SHEET				Checked	l by	GC		Date	Jan 1999
Imposed la 384 <u>Use 406 ></u> B.6 Cola Data for a Table B.6 Storey	oad defl <u>5 × 1</u> × 205 × 178 × umn loa valculati Data Beam	lection of be 180 × 6000 5 × 27300 74 UB S27 ds fon of colum for calculati	x am (as) $x^3 - \frac{10^4}{5 steel}$ x n momion of a $x = 10%$	suming sin ' 9.05mn eents are g column mo restraint	nply supp n <mark>Span</mark> iven in T oments <u>Mome</u> t	ported) $\frac{n}{2} < \frac{Sp}{3}$ Cable B.6	= 60 5. horizonta	l loads	OK		
			m	oment			[
	Dead (kN)	Imposed (kN)	Dead (kNm)	Imposed (kNm)	Notiona	l loads	Wi	ind			
					External (kNm)	Internal (kNm)	External (kNm)	Intern (kNn	nal n)		
3	81	90	12.2	13.5	4.02	8.03	8.4	16.	8		Sheet 1
1	81	90	12.2	13.5	11.5	22.9	19	38			Table B.4
N.B. All values are UNFACTORED, except for moments due to notional horizontal loadsTable B.1The values for the 10% restraint moment are calculated from the unfactored floor loads (i.e. 10% of wL ² /8)Dead= $0.1 \times 27 \times 6^2/8 = 12.2$ Dead= $0.1 \times 30 \times 6^2/8 = 13.5$ B.7Internal column designThe columns will be spliced above the second storey floor beams, where change in section size may take place. Therefore, design calculations will be required for storeys 3 and 1.											

The Ste	eel /7/		Job No:	PUB 263		Page 9 of	21	Rev $oldsymbol{A}$
Constru	uction		Job Title 🛛 🛽	Design exa	mple 1			
Institut	e 之	:	Subject I	nternal co	lumn desig	n		
Silwood Par Telephone:	rk, Ascot, Berks SL5 (01344) 623345	7QN		~ ~-	<u> </u>			
Fax: (01344	4) 622944	1	Client S	SCI	Made by	PRS	Date	Dec 1998
CALCUL	ATION SHEET				Checked by	GC	Date	Jan 1999
Table B.7	Loading on in	ternal co	olumns					
Storey	Loading (kN)	Sw of	Tota	al load	Reduction in	Reduced		
		column (kN	Dead (kN)	Imposed (kN)	imposed load (kN)	imposed load (kN)		
4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	147	54	0	54		
3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	312	234	10% 23	211		
2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	479	414	20%	331		
1	$\begin{array}{c c} \hline D & 81 \\ \hline I & 90 \\ \hline \end{array} \begin{array}{c} \hline D & 81 \\ \hline I & 90 \\ \hline \end{array} \begin{array}{c} \hline D & 81 \\ \hline I & 90 \\ \hline \end{array}$	6	647	594	30%	416		
The reduce BS 6399-1 B.7.1 S <u>Dead load</u>	ction in imposed 1: Table 2. Storey 3 1 plus imposed lo	l load fo bad plus i	r the num notional fo	ber of stor	reys carried	is given by		
Design loo	ad at ULS:	$F_c =$	= 1.4 × 31	$2 + 1.6 \times$	211 = 7	74 kN		Table B.7
Design me (due to no	oment at ULS: otional loads)	M_{x}			= 8.	.03 kNm		Table B.6
Moments produce n load (i.e. critical.	due to eccentric to net moment a omitting impose	reaction bout the ed load o	s and the f major axi, on one bea	10% restrai s. By insp m at third	nt moment a ection, patta floor level)	balance and ern imposed will not be		
<i>L</i> =	4.0 m							
$L_{Ey} =$	1.0L = 4.0 m	; L_{Ex}	= 1.5	5L =	6.0 m			Section 2.4
<u>Try 203 ×</u>	< 203 × 52 UC	<u>8275 stee</u>	<u>el</u>					
Section is	Class 1 plastic							

The Steel	7	Job No	:	PUB 263			Page	<i>10</i> °	f	21	Rev $oldsymbol{A}$
Construction		Job Titl	le	Design exa	mple	1					
Institute		Subject	t	Internal co	lumn	desi	ign				
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345											
Fax: (01344) 622944		Client		SCI	Made	by]	PRS		Date	Dec 1998
CALCULATION SHEET					Chec	ked by	,	GC		Date	Jan 1999
$At L_{EY} = 4 m$	P _{cy}	=	-	1100 kN							Ref 11
$At L_{EX} = 6 m$	P_{cx}	=		1370 kN							Ref 11
At L = 4 m	M _{bs}	=	-	150 kNm							Ref 11
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{774}{1100} \% \frac{8.03}{150}$	0.	76 <	1.	.00				01	K		Section 2.4
By inspection, pattern imposed	l loc	ıd will	n	ot be critical.							
<u>Dead load plus imposed load p</u>	lus	wind l	loa	ading							
Design load at ULS:	F _c	= 1.2	×	312 + 1.2 ×	× 211	=	628 k	κN			Table B.7
Design moment at ULS:	M_x	= 1.2	×	16.8		=	20.2	kNm			Table B.6
(due to notional loads)											
Moments due to eccentric reac produce no net moment about	tion the	ıs and major	th • a:	ne 10% restrai xis.	int mo	omen	t balaı	nce an	d		
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{628}{1100} \% \frac{20.2}{150}$	0.	71 <	1.	.00				01	K		Section 2.4
Dead load plus wind loading											
Design load at ULS:	F _c	= 1.4	×	312		=	437 k	kN			Table B.7
Design moment at ULS:	M_x	= 1.4	×	16.8		=	23.5	kNm			Table B.1
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{437}{1100} \% \frac{23.5}{150}$	0.	55 <	1.	.00				O	K		Section 2.4
<u>Use 203 × 203 × 52 UC S275</u>	ste	eel									
B.7.2 Storey 1											
Dead load plus imposed loadin	g p	lus not	tio	nal forces							
Design load at ULS:	F _c	= 1.4	×	647 + 1.6 ×	< 416	=	1571	kN			Table B.7
Design moment at ULS:	M_x	=					22.9	kNm			Table B.6

The Steel	Job No: PUB 263	Page	<i>11</i> of	21	Rev A
Construction	Job Title Design exa	mple 1			
Institute	Subject External co	lumn design			
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345			DDC	<u> _</u>	D 1000
Fax: (01344) 622944	Client SCI	Made by		Date	Dec 1998
CALCULATION SHEET		Checked by	GC	Date	Jan 1999
L = 5.0 m					
$L_{Ey} = 1.0 L = 5.0$	$m; L_{Ex} = 1.$	5L = 7.5 m			Section 2.4
<u>Try 254 × 254 × 89 UC S275 ste</u>	<u>eel</u>				
Section is Class 1 plastic					
$At L_{Ey} = 5 m \qquad P_{cy} =$	1860 kN				Ref 11
$P_{cx} > P_{cy}$					
$At L = 5 m \qquad M_{bs} =$	316 kNm				Ref 11
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{1571}{1860} \% \frac{22.9}{317} + 0.$.92 < 1.00		ОК		Section 2.4
By inspection, pattern loading will	ll not be critical.				
Dead load plus imposed load plus	wind loading				
Design load at ULS: F_c	$= 1.2 \times 647 + 1.2 \times$	416 = 1276	kN		Table B.7
Design moment at ULS: M_x	$= 1.2 \times 38.0$	$= 45.6 \ kNm$			Table B.1
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} \cdot \frac{1276}{1860} \% \frac{45.6}{317} \cdot 0.$.83 < 1.00		ОК		
Dead load plus wind loading					
Design load at ULS: F_c	$= 1.4 \times 647$	= 906 k	kΝ		Table B.7
Design moment at ULS: M_x	$= 1.4 \times 38.0$	= 53.2	kNm		Table B.1
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{906}{1860} \% \frac{53.2}{317} + 0.0$.65 < 1.00		OK		Section 2.4
<u>Use 254 × 254 × 89 UC S275 st</u>	<u>eel</u>				

The St	eel /7/7/	∠ Job	No: PU	U B 263		Page 12 of	21	Rev A		
Constr	uction	Job	Title De	esign exar	nple 1					
Institu	te 🔟	Subj	ect Ex	ternal co	lumn desiş	gn				
Silwood Pa Telephone:	ark, Ascot, Berks SL5 7QN (01344) 623345	N					T			
Fax: (0134	4) 622944	Clier	nt SC	CI (CI)	Made by	PRS	Date	Dec 1998		
CALCULATION SHEET Checked by GC								Jan 1999		
B.8 Ext	ternal column design	!								
Table B.8	8 Loading on extern	nal colur	nns							
Storey	Loading (kN)	Sw of	Tota	ıl load	Reduction in	Reduced				
	c	olumn (kN)	Dead (kN)	Imposed (kN)	imposed load (kN)	imposed load (kN)				
4	D 72	3	75	27	0	27				
3	D 81	3	159	117	10%	105				
	<u> </u>				12	2				
2		5	245	207	20% 4	166				
1	D 81 I 90	6	332	297	30%	208 9				
N.B. Va	lues are UNFACTO	RED				•				
The redu BS 6399-	iction in imposed l 1: Table 2.	oad for	number	of storey	vs carried	is given by				
10% resti	raint moments									
The mom	ents due to partial fi	ixity of t	he beam	ends are t	aken from	Table B.6.				
Moment	due to dead load	=	12.2	kNm						
Moment	due to imposed load	=	13.5	kNm						
B.8.1	Storey 3									
<u>Dead load</u>	d plus imposed load	<u>plus noti</u>	ional fore	<u>ces</u>						
Design lo	ad at ULS: $F_c =$	1.4 × 1	59 + 1.6	5 × 105	= 3	91 kN		Table B.8		
Design m	oment at ULS: Mx									
Assume s	ection 200 deep									
Figure R										
I Iguit D		i (siorey	<i>.</i> ,							

The Steel	Job No:	PUB 263		Page 13 of	21	Rev $oldsymbol{A}$
Construction	Job Title	Design exa	mple 1			
Silwood Bark Accost Barks SI 5 70N	Subject	External co	lumn de	sign		
Telephone: (01344) 623345 Fax: (01344) 622944	Client	SCI	Made by	PRS	Date	Dec 1998
CALCULATION SHEET			Checked b	y GC	Date	Jan 1999
Eccentricity moment (1.4 \times 81 +	· 1.6 × 9	0) (0.1 + 0.1) =	51.5 kNm		Table B.8
10% restraint moment (1.4 $ imes$ 12.	2 + 1.6	× 13.5)	=	<u>38.7</u>		
				90.2 kNm		
Divide moment equally between u	pper and	lower column	lengths	45.1 kNm		Section 2.4
Notional horizontal loads				<u>4.0</u>		Table B.6
Total design moment M_x			=	49.1 kNm		
L = 4.0 m						
$L_{Ey} = 1.0L = 4.0$	<i>m;</i> 1	$L_{Ex} = 1.$	5L =	6.0 m		Section 2.4
<u>Try 203 × 203 × 52 UC S275 sta</u>	eel					
Section Class 1 plastic						Ref 11
$At L_{EY} = 4 m$	P _{cy}	= 1100 kN	7			Ref 11
$At L_{EX} = 6 m$	P_{cx}	= 1370 kN	T			Ref 11
At L = 4 m	M_{bs}	= 150 kNn	n			Ref 11
$\frac{F_c}{P} \% \frac{M_x}{M_c} + \frac{391}{1100} \% \frac{49.1}{150} + 0$.68 < 1.	00		OK		Section 2 A
c mbs 1100 100						Section 2.4
<u>Dead load plus imposed load plus</u>	wind loa	uding				
Design load at ULS: $F_c =$	1.2 (15	59 + 105 + 5	5.6) =	324 kN		Tables B.8 and B.2
Design moment at ULS: M_x						
Eccentricity moment (1.2 $ imes$ 81 +	- 1.2 × 9	0) (0.1 + 0.1) =	41.0 kNm		Table B.7
10% restraint moment (1.2 $ imes$ 12.	2 + 1.2	× 13.5)	=	<u>30.8</u>		
				71.8 kNm		
Divide moment equally between u	pper and	lower column	lengths	35.9 kNm		
Moment due to wind (1.2 $ imes$ 8.4)				<u>10.1</u>		Table B.1

The Steel	Job No:	PUB 263		Page 14	of	21	Rev A
Construction	Job Title	Design exa	mple 1				-
Silward Back Asset Backs CLE ZON	Subject	External co	olumn des	ign			
Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 623345 Fax: (01344) 622944	Client	SCI	Made by	PRS		Date	Dec 1998
CALCULATION SHEET		~	Checked by	GC		Date	Jan 1999
Total design moment M_x $\frac{F_c}{2} \% \frac{M_x}{2} + \frac{324}{2100} \% \frac{46.0}{170} + 0.$	6 < 1.00)	= .	46.0 kNm	OK		Section 2.4
$P_{c} M_{bs} 1100 150$					0		Section 2.4
Dead plus wind loading							
By inspection, not critical							
<u>Use 203 × 203 × 52 UC S275 sta</u>	eel						
B.8.2 Storey 1							
Dead load plus imposed load plus	notional	<u>forces</u>					
Design load at ULS: F_c :	= 1.4 × 3	332 + 1.6 ×	208 =	798 kN			Table B8
Design moment at ULS: M_x							
Assume section 200 deep							
100 100							
Figure B.10 External column (storey 1)						
Eccentricity moment $M_x = (1.4 \times$	81 + 1.6	×90) (0.1 +	0.1) =	51.5 kNm			Table B.8
10% restraint moment $M_x = (1.4)$	× 12.2 +	+ 1.6 × 13.5) =	<u>38.7</u>			
				90.2 kNm			
Divide equally between upper and	lower col	umn lengths	= -	45.1 kNm			
Moment due to notional horizonta	ıl loads M	r x	=	<u>11.5</u>			Table B.6
Total design moment M_x			= .	56.6 kNm			
L = 5.0 m							
$L_{Ey} = 1.0L = 5.0 m;$	L_{Ex}	= 1.5L	=	7.5 m			Section 2.4

The Steel	Job No: PUB 263		Page 15 of	21	Rev $oldsymbol{A}$
Construction	Job Title Design exam	nple 1			
	Subject Connection	design			
Silwood Park, Ascot, Berks SL5 /UN Telephone: (01344) 623345 Fax: (01344) 622944	Client SCI	Made by	PRS	Date	Dec 1008
CALCULATION SHEET	Short DCI	Checked by	GC	Date	Jan 1999
<u>Try 203 × 203 × 71 UC S275 ste</u>	<u>eel</u>				
$At L_{EY} = 5 m$	$P_{cy} = 1190 \ kN$				R ef 11
$P_{cx} > P_{cy}$					
At L = 5 m	$M_{bs} = 190 \ kNm$	Į.			Ref 11
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{798}{1190} \% \frac{56.6}{190} + 0.$.97 < 1.00		ОК		Section 2.4
Dead load plus imposed load plus	wind loading				
Design load at ULS: F_c :	= 1.2 (332 + 208 + 22	2.7) = 0	575 kN		Tables B.8 and B.2
Design moment at ULS: M_x					
Eccentricity moment $M_x = (1.2)$	×81+1.2×90) (0.1+0.	1) =	41.0 kN		
10% restraint moment $M_x = (1.2)$	$2 \times 12.2 + 1.2 \times 13.5$	= <u>3</u>	<u>30.8</u>		
		2	71.8 kNm		
Divide equally between upper and	l lower column lengths	Ĵ	35.9 kNm		
Wind load $W_w = 1.2 \times 19$.	2.0	= 2	22.8		Table B.1
Total design moment M_x		5	58.7 kNm		
$\frac{F_c}{P_c} \% \frac{M_x}{M_{bs}} + \frac{675}{1190} \% \frac{58.7}{190} + 0.$.88 < 1.00		OK		
Dead load plus wind loading					
By inspection, not critical					
<u>Use 203 × 203 × 71 UC S275 st</u>	<u>eel</u>				
				1	

The Steel	Job No:	PUB 263		Page 16 of	21	Rev $oldsymbol{A}$
Construction	Job Title	Design exa	mple 1			
Institute	Subject	Connection	design			
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345			T		1	
Fax: (01344) 622944	Client	SCI	Made by	PRS	Date	Dec 1998
CALCULATION SHEET			Checked by	GC	Date	Jan 1999
B.9 Connection design						
Calculations are given for a conne only, as an example of how the d	ection to esign sh	a perimeter co ould be carried	olumn at fir 1 out.	rst floor level		
<u>Dead load plus imposed load plus</u>	notiona	<u>ıl forces</u>				
Design moment at ULS: (Moment from 10% beam restrain	= nt	(1.4 × 12.2 +	+ 1.6 × 13	.5) + 18.1		Sheet 12 Table B.5
and notional horizontal loads)	=	56.8 kNm				
Design shear at ULS: F_{y}	=	$(1.4 \times 81 + 1)$	1.6 × 90) ·	$+\frac{18.1}{3}$		
(Shear from beam reactions and notional horizontal force)	=	263 kN				
Dead load plus imposed load plus						
Design moment at ULS: M	=	(1.2×12.2 +	1.2×13.5)	+ 1.2×31		Sheet 12 Table B 3
(Moment from 10% beam restrain and wind loading)	<i>it</i> =	68.0 kNm				14010 0.5
Design shear at ULS: F_v	=	$(1.2 \times 81 + 1)$	1.2 × 90) +	$+ \frac{1.2 \times 31}{3}$		
(Shear from beam reactions and wind loading)	=	218 kN				
Dead load plus wind loading						
Design moment at ULS: M	=	1.4 × 12.2 +	1.4 × 31.	0		
(Moment from 10% beam restraint and wind loading)	=	60.5 kNm				
Design shear at ULS: F_{v}	=	$1.4 \times 81 + \frac{1}{2}$	$\frac{1.4 \times 31}{3}$			
(Shear from 10% beam restraint and wind loading)	=	128 kN				
A suitable connection for a 406 selected from Appendix D would b tension bolts, see page 67.	× 178 be a 12 n	× 74 UB to a nm flush end p	$a 203 \times 20$ late with a s)3 × 71 UC single row of		

The Steel	Job No:	PUB 263	Page 17 of	21	Rev $oldsymbol{A}$						
Construction	Job Title	Design exa	mple 1								
Institute	Subject	Sway due t									
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345			T		1						
Fax: (01344) 622944	Client	SCI	Made by	PRS	Date	Dec 1998					
CALCULATION SHEET			Checked by	GC	Date	Jan 1999					
For this connection $M_c = 70$ kN row = 442 kN, compared with respectively. Column panel shear at ULS:	Im and the the desig	he shear cap n values of	acity with d 60.5 kNm	an extra bolt and 128 kN							
Having chosen a possible connection based on consideration of applied moment and shear, the column panel shear resistance must now be checked.											
and shear, the column panel shear resistance must now be checked. The critical moment is 68 kNm, due to dead load plus imposed load plus wind loading, and the chosen connection has an effective lever arm of 337 mm (dimension A for a 406 \times 178 beam from page 67).											
Applied panel shear force (for a p											
		=	201.8	kN							
Panel shear capacity for 203 $ imes$ 2	03 × 71	<i>UC</i> =	= 353 kN	V OK							
B.10 Serviceability limit state -	sway due	e to wind									
Sway deflections can be calculate used in the design example is a Roberts ^[12,13] .	ed using d simplified	any recognise d procedure d	d method. leveloped b	The method by Wood and							
The actual frame is replaced by a the substitute frame is that:	ı substitui	te beam-colun	nn frame.	The basis of							
(i) For horizontal loading on th one level are approximately	e actual f equal, a	frame, the roto nd	ations of all	i joints at any							
(ii) Each beam restrains a colu	mn at boi	th ends.									
The total stiffness K_b of a beam summation over all the beams in	n in the the actua	substitute fra l frame at the	eme is obta level being	iined from a g considered.							
The total stiffness K_c of a column summation over all the columns in	mn in th the actu	e substitute j al frame at th	frame is of e level being	btained by a g considered.							
In the simplified method of Wood and Roberts, the sway of a storey is dependent partly on stiffness distribution coefficients calculated for the substitute frame.											

l

The Steel	Job No:	PUB 263		Page 18 of	21	Rev $oldsymbol{A}$
Construction	Job Title	Design exa	mple 1			
Institute	Subject	Sway due to	o wind loa	ding		
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345		0.01	.	DDC		D 1000
	Client	SCI	Made by		Date	Dec 1998
CALCULATION SHEET			Checked by	GC	Date	Jan 1999
To allow for continuity of columns each floor beam restrains column reflected in the form of the distrib	s in a mult lengths a bution coe	i-storey struct bove and belo efficients.	ure, it is reo w its own l	cognised that evel. This is		
The stiffness distribution coefficie be determined from the chart give	ents enabl en below (e a non-dime (Figure B.11)	nsional swa . Bv defini	iy index n to		
$\bar{\mathbf{n}} = \frac{\mathbf{j}/h}{Fh/(12EK_c)}$		9				
where)/h is the sway ang F is the total wind E is Young's mod	le of the s d shear or lulus of el	storey being c n the column lasticity (205 l	onsidered of the subs kN/mm²)	titute frame		
Values of k_t and k_b for use with Table B.11.						
Hinged 1.0	\square	$\langle \cdot \rangle$	2	γ_{φ}		
			× ×			
0.8		all of				
	$ \land $	Corgi S	$\langle / / /$			
k _t	$\langle \rangle \langle$	3.5°	$\times / / /$			
0.6			$\langle / / \rangle$	$\sum_{i=1}^{n}$		
		$\langle \rangle \rangle /$	X /			
0.4		\times	+//	Ą		
	°	$\langle \rangle \rangle \rangle \rangle$	$\langle \rangle \rangle \rangle$	\backslash		
			$\langle \rangle \rangle \rangle \langle \rangle$	$\overline{\mathbf{N}}$		
Fixed 0 \downarrow 0 0.2	0.4	0.6	0.8	1.0		
Fixed		k h	н	inged		
Figure B 11 Swam in day M		D				
Figure D.11 Sway maex N						

The Stee	el	[7]		Job	No:	PUB 2	63			Page	19 of	21	Rev	A
Construc	ction	$\langle l l l l l l l l l l l l l l l l l l l$	\sum	Job	Title	Design	exar	mple	e 1					
Institute		\angle		Sub	oject	Swav d	ue to	- o wi	nd loa	ding				
Silwood Park,	Ascot, Be	erks SL	5 7QN		,			- ,, 0						
Telephone: (0 Fax: (01344)	1344) 62: 622944	3345		Clie	ent ,	SCI		Mad	e by	j	PRS	Date	Dec	<i>1998</i>
CALCULA	TION S	HEET	г					Cheo	ked by		GC	Date	Jan	1999
16.6 kN →			<u>305 x 16</u>	65 x !	54 UB	¹ س ¹	6.6 k	N	► k	^{b4}	r 🔺			
17 O LN	50	3	406 x 1	78 x	74 UB		701	k _{c4}	k	b3 i	4.0			
		1 0 2				- 52 - 52	7.U K	.ı		<u> </u>	5 4.0			
14.2 kN 🔶	، ۲۵	<u> </u>	406 <u>x</u> 1	78 x_	<u>7</u> 4 UB	= 1	4.2 k	N	► k	^{b2}				
10.0 kN	254	3	406 x 1	78 x	74 UB	L C 20	201	k _{c2}	k	b1 .	4.0			
13.0 KIN	40	ά				, 71×	3.U K	.IN —;	×		50			
		×		_				ĸ c1	\bot		<u> </u>			
	< 6.0	★ 6.	.0 6	.0 >	6.0	>								
			~ 1 >											
Figure B.12	? Fran	ne mo	odel for	servi	iceabilit	y limit	state	calc	ulatio	ns				
Stiffness in	substitu	te fra	me											
<u></u>	50000000	<u></u> j.u												
Table B.9	Beam	stiffne	ess											
Storey	I _h (cn	n ⁴)	L_{h} (cm)		K,	= 3 GI _* /	L		К, (с	m ³)				
4	1170	0	600		$\frac{1}{3 \times 4 \times 11700/600} \qquad \frac{1}{234}$									
3	2730	0	600		3×4	× 2730	0/600		54	6				
2	2730	0	600		3×4	× 2730	0/600		54	6				
1	2730	0	600		3×4	× 2730	0/600		54	6				
Table D 10	Colu	mn ati	ffnass											
1 avie B.10	Colul	กก รณุ	jjness											
Storey	Ext I_c	Int 1	I _c h (c	m)		$K_c =$	EI _c /h	!		K_c (cm ³)			
	(<i>cm</i> ⁴)	(<i>cm</i> ⁴	⁴)											
4	5259 5250	525	y 40			5 × 52	259/40	<u>10</u>		65	.7			
3	5259 7618	5252 1427	у 40 70 <u>л</u> 0	0	(2 ×	5×52	439/40 3 × 1	10 427M	/400	05 1.	45			
1	7618	1427	70 50	0	(2 ×	7618 + 3	$\frac{7}{3} \times 14$	4270)	/500	1	16			
		1127	5 50	<u>~ </u>	(= ^			, .,			~			
						45								

The Stee	el	[]	$\neg \Box$	Job No:	PUB 263	Page	20	of	21	Rev	A		
Construc	ction	\sum		Job Title	Design exa	mple 1							
Institute				Subject	Sway due to	o wind loa	ding						
Silwood Park, Telephone: (0	Ascot, 1344) 6	Berks SL§ 23345	5 7QN							r			
Fax: (01344)	622944			Client	SCI	Made by	I	PRS		Date	De	c 199	8
CALCULA	TION	SHEET				Checked by		GC		Date	Jar	ı 199	9
<u>Stiffness di</u>	<u>stributi</u>	on coef	<u>ficients</u>										
Table B.11	Join	nt stiffn	ess coef	ficients									
Storey	$k_t' - \frac{1}{K}$	K _c %K _u K _c %K _u %K	bt	k_t	$k_b' \frac{K_c \% K_l}{K_c \% K_l \% K_{bb}}$	k _b							
4	$\frac{65}{65.7}$	5.7%0 %0%234		0.22	<u>65.7%65.7</u> 65.7%65.7%546	0.12	9						
3	<u>65.7</u>	.7%65.7 %65.7%5	46	0.19	65.7%145 65.7%145%546	0.28	8						
2	14 145 %	!5 %65.7 665.7 %54	16	0.28	145 %116 145 %116 %546	0.32	2						
1	11 116%	6%145 6145%54	5	0.32	Fixed base	0							
wnere: <u>Sway deflec</u> Table B.12	$K_u \text{ is } i$ $K_t \text{ is } t$ $K_{bt} \text{ is } i$ $K_{bt} \text{ is } i$ $Etions$ Swa	ne stiff he stiff the stiff the stiff the stiff	ness of ness of fness of fness of ctions fo	the colu the colun the bean the bean or a rigid	mn above the si nn below the sto n below the stor n below the stor	orey orey rey rey							
Storey	k,	k _b	N	F (kN)	<u>)</u> , <u>Fh</u> <u>h</u> 12E K	$\frac{1}{K_c}$ $\frac{1}{K_c}$	$\frac{1}{n}$) (mn	1)				
4	0.22	0.19	1.39	16.6	$\frac{16.6 \times 400 \times 100}{12 \times 20500 \times 100}$	$\frac{1.39}{65.8}$ $\frac{1}{17}$	<u>!</u> 50	2.3					
3	0.19	0.28	1.47	33.6	$\frac{33.6 \times 400 \times 10^{-3}}{12 \times 20500 \times 10^{-3}}$	1.47 1 65.8 81	! !9	4.9					
2	0.28	0.32	1.65	47.8	$\frac{47.8 \times 400 \times 11}{12 \times 20500 \times 11}$	$\frac{1.65}{145}$ $\frac{1}{11}$	<u>!</u> 30	3.5					
1	0.32	0	1.34	60.8	$\frac{60.8 \times 500 \times 112}{12 \times 20500 \times 112}$	$\frac{1.34}{116}$ $\frac{1}{70}$! 00	7.1					
Total						<u>- 1</u> 95	55	17.8					

The Steel	Job No:	o: <i>PUB 263</i> Page 21 of						Rev $oldsymbol{A}$		
Constructio	n ///	Job Title	Design exa	mple 1					-	
Institute		Subject	Sway due to	o wind loa	ding					
Silwood Park, Asco Telephone: (01344)	t, Berks SL5 7QN) 623345							1		
Fax: (01344) 6229	44	Client	SCI	Made by	PRS			Date	Dec 1998)
CALCULATIO	N SHEET			Checked by		GC		Date	Jan 1999	
<u>Allowance for c</u>	onnection flexibil	<u>ity</u>								
The deflections of to make an appr	calculated treating oximate allowand	the frame the for cont	e as rigid-joint nection flexib	ed are incre ility (see Se	eased ection	by 5 2.7.	0% 2).			
The increased d	eflections shown	in Table I	B.13 are acce	otable.						
Table B.13 St										
Storey	$\begin{array}{c} \textbf{Rigid frame} \\ \left(\begin{array}{c} \underline{\textbf{D}} \\ h \end{array} \right) \end{array}$	Wind-mome (1.5 -								
4	1/1750	1/112	70	1/300	()K				
3	1/819	1/54	6	1/300	6)K				
2	1/1130	1/75	3	1/300	6)K				
1	1/700	1/46	7	1/300	()K				
Total	1/955	1/63	7	1/300	0)K				

APPENDIX C WORKED EXAMPLE: MINOR AXIS FRAME

C.1 Introduction

In this example, a *minor axis* wind-moment frame will be designed. The implications for the *major axis* frame considered in Appendix B will also be highlighted.

The following aspects of the frame design are considered:

- C framing layout
- C loading
- C column loads general
- C internal column design
- C external column design
- C minor axis beams
- C major axis beams
- C design of minor axis beam to column connections
- C design of major axis beam to column connection
- C serviceability limit state.

C.1.1 Frame layout

The floor comprises precast concrete units spanning onto the primary beams that frame into the major axis of the columns. The number of bays is four, and the frame spacing is 6 m (see Figure C.1).

Figure C.1 Frame layout

C.1.2 Loading

Vertical loads

The vertical loads (dead and imposed) are as defined in Section B.2. Due to the floor layout, there are no imposed loads on the *minor axis* beams.

Horizontal loads

The horizontal loads are due to wind and notional horizontal forces. The wind loads are assumed to be the same in both directions as the column spacing is the same in both directions. Similarly, the notional horizontal forces are assumed to be the same in both directions. Note also that both the wind loads and the notional horizontal forces need only be applied about one axis at a time, and the most severe case will generally be to apply the loads to the *minor axis* frames.

C.1.3 Column loads - general

The vertical loads and major axis moments on the columns are the same as described in Appendix B.

The Steel	Job No:	PUB 263		Page	lob No: <i>PUB 263</i> Page <i>1</i> of						
Construction	Job Title	Design exan	nple								
Silwood Park, Ascot, Berks SI 5 70N	Subject	Frame unbro	aced out of	` plane							
Telephone: (01344) 623345 Fax: (01344) 622944	Oliont	SCI	Mada hu		חכ	Data	Dec 1009				
CALCULATION SHEET	Client	501	Checked by	<u> </u>		Date	Dec 1998				
			Checked by		ĸ	Date	Dec 1990				
C.2 Internal column design											
C.2.1 Storey 3											
Dead load plus imposed load plu	<u>s notiona</u>	<u>ul forces</u>									
Design load at ULS											
$F_c = 1.4 \times 312 + 1.6 \times 211 = 774 kN$ Table B.7											
Design moment at ULS											
Due to notional loads M	" =	8.03 kNm					Table B.6				
Similarly M	, =	8.03 kNm									
$L = 4 m \qquad L_E$	_x =	$L_{ey} = 1.$	5 × 4 =	= 6	m	S	ection 3.1.1				
<u>Try 203 × 203 × 71 UC S275 s</u>	<u>teel</u>										
Section classification is Class 1	plastic						Ref 11				
For $L_{Ey} = 6 m A_g$	$p_c =$	941 kN					Ref 11				
For $L = 4 m$ M	<i>bs</i> =	207 kNm					Ref 11				
p_y	$Z_y =$	65.2 kNm					Ref 11				
Moments about the major axis we restraint moment from the beams there is therefore no net moment	ill be due s. For th t about th	to any eccentric is example thes ne major axis.	c reactions se moments	and th balan	e 10% ce and						
The notional horizontal forces o critical direction will be out of p	nly act ii lane.	n one direction	at a time d	and the	e most						
Overall buckling check											
$\frac{F_c}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{774}{941} \% \frac{0}{207} \% \frac{8.03}{65.2} + 0.95 < 1$ BS 5950-1:1990 4.7.7											
<u>Dead load plus imposed load plu</u>	s wind lo	<u>pading</u>									
Design load at ULS											
$F_c = 1.2 \times 312 + 1.2 \times 211 = 628 \ kN$ Table B.7											

The Steel	Job No: PUB 263	Page 2 of	14 Rev A								
Construction	Job Title Design exam	ple	·								
Silwood Park Acast Parks SL5 70N	Subject Frame unbra	ced out of plane									
Telephone: (01344) 623345											
	Client SCI	Made by PRS	Date <i>Dec 1998</i>								
		Checked by GC	Date <i>Dec 1998</i>								
Design moment at ULS											
Due to wind loads $M_x =$	1.2 × 16.8 =	20.2 kNm	Table B.6								
Similarly $M_y =$		20.2 kNm									
Applying the wind load about the minor axis only.											
$\frac{F_c}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{628}{941} \%$	$\% \frac{0}{207} \% \frac{20.2}{65.2}$ ' 0.9	8 < 1	BS 5950-1:1990 4.7.7								
Dead load plus wind loading											
$\begin{array}{rcl} F_c &=& 1.4 \times 312 &=\\ M_x &=& 1.4 \times 16.8 &=\\ M_y &=& 1.4 \times 16.8 &= \end{array}$	437 kN 23.5 kN 23.5 kN										
Applying the wind load about the	minor axis only										
$\frac{F_c}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{437}{941} \%$	$\% \frac{0}{207} \% \frac{23.5}{65.2} $, 0.8	2 < 1	BS 5950-1:1990 4.7.7								
<u>Use 203 × 203 × 71 UC S275 st</u>	teel										
C.2.2 Storey 1											
Dead plus imposed plus notional	<u>forces</u>										
Design load $F_c = 1.4$	$4 \times 647 + 1.6 \times 416$	= 1571 kN	Table B.7								
Design moment M_y due to notional loads		$= 22.9 \ kNm$	Table B.6								
$L = 5 m \qquad L_{Ex} =$	$L_{Ey} = 7.5 m$		Section 3.1.1								
<u>Try 305 × 305 × 118 UC S275 s</u>	<u>steel</u>										
Section Class is Class 1 plastic			Ref 11								
$At L_{Ey} = 7.5 m \qquad A_g$	$p_c = 1935 kN$		<i>Ref 11</i>								
$L = 5 m \qquad M_{bs}$	$s = 519 \ kNm$ $Z_{m} = 156 \ kNm$	ı 1	Ref 11 Ref 11								
ry-	,		- 0 -								

The Steel	Job No:	PUB 263 Page				14	Rev A
Construction	Job Title	Design exan	nple				
Silwood Park, Ascot, Berks SL5 70N	Subject	Frame unbr	aced out of	f plane	?		
Telephone: (01344) 623345 Fax: (01344) 622944	Client	SCI	Mada by		DDC	Data	Dec 1009
CALCULATION SHEET	Client	501			GC	Date	Dec 1998
			onecked by		50	Dute	<i>Det 177</i> 0
$\frac{F_c}{A_g p_c} \% \frac{M_y}{p_y Z_y} = \frac{1571}{1935} \% \frac{22.9}{156}$	' 0.90	6 < 1					
Dead load plus imposed load plus	wind loa	<u>ding</u>					
Design load $F_c = 1.2$	× 647 +	- 1.2 × 416	= 1	1276 k	N		Table B.7
Design moment $M_y = 1.2$ due to wind load	× 38.0		= 4	45.6 k	Nm		Table B.6
Applying the wind load about the	minor ax	is only					
$\frac{F_c}{A_g p_c} \% \frac{M_y}{p_y Z_y} = \frac{1276}{1935} \% \frac{45.6}{156}$	0.95	5 < 1				BS	5950-1:1990 4.7.7
By inspection, dead load plus win	d load ca	se will not go	vern.				
<u>Use 305 × 305 × 118 UC S275 s</u>	<u>steel</u>						
C.3 External column design							
The following calculations are of perimeter of the frame.	carried oi	ut for a non	-corner col	lumn	on the	?	
C.3.1 Storey 3							
<u>Dead load plus imposed load plus</u>	notional	<u>forces</u>					
Design load $F_c = 1.4 \times 15$	9 + 1.6 ×	× 105 =	391 kN	V			Table B.8
<u>Design moments</u>							
Due to eccentricity (assuming cold	umn is 20	0 mm deep)					
$M_x = (1.4 \times 81 + 1.6 \times 9)$	0) (0.1 +	· 0.1) =	51.5 ki	Nm			Table B.8
Due to 10% restraint moment							
$M_x = (1.4 \times 12.2 + 1.6 \times 12.2)$	13.5)	=	<u>38.7 k</u>	<u>Nm</u>			
	,	Total =	90.2 k	Nm			

The Steel	Job No: <i>PUB 2</i>	63		Page	4 of	14	Rev A		
Construction	Job Title Design	examp	le				-		
Silwood Park Ascot Berks SI 5 70N	Subject Frame	Subject Frame unbraced out of plane							
Telephone: (01344) 623345 Fax: (01344) 622944	Client SCI			<u>л</u>	DC	Data	Dec 1009		
CALCULATION SHEET	Client SCI					Date	Dec 1998		
		C	necked by			Date	Dec 1770		
Divide moment equally between u	pper and lower co	olumn l	engths						
		M_x	= 4	45.1 kN	<u>Vm</u>				
Moment due to notional load		M_x	= 4	4.0 kNi	т		Table B.6		
Moment due to notional horizonta	al forces	M_y	= 4	4.0 kNi	т				
$L = 4 m \qquad L_{Ex} =$	$L_{Ey} = 1.5$	5 L	= 6	6 m		S	ection 3.1.1		
<u>Try 203 × 203 × 52 UC S275 ste</u>	eel								
Section classification Class 1 plas	tic						Ref 11		
For $L_E = 6 m$ $A_g p$ For $L = 5 m$ M_{bs} $p_y Z$	$p_c = 678 \ kN$ = 150 kNm $Z_y = 47.9 \ kNn$	n n							
Applying the notional force about	the minor axis o	nly							
$\frac{F_c}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{391}{678} \%$	$\frac{45.1}{150}$ % $\frac{4}{47.9}$	' 0.96	5		OK	BS :	5950-1:1990 4.7.7		
Dead load plus imposed load plus	wind loading								
Design load at ULS $F_c =$	1.2 (159 + 103	5 + 5.6	5) = 3	324 kN	r		Tables B.8 and B.2		
Design moment at ULS									
Due to eccentricity									
$M_x = (1.2 \times 81 + 1.2 \times 9)$	0) (0.1 + 0.1)		= 4	41.0 kN	Nm		Table B.8		
Due to 10% restraint									
$M_x = (1.2 \times 12.2 + 1.2 \times 12.2)$	13.5)		= <u>;</u>	30.8 kl	<u>Vm</u>		Table B.6		
		Tota	al = 2	71.8 kN	Nm				
Divide moment equally between u	pper and lower co	olumn l	engths						
$M_x =$	<u>35.9 kNm</u>								
Moment due to wind $M_x =$	1.2 × 8.4 =	= 10.1	l kNm				Table B.6		

The Steel	Job No:	PUB 263	PUB 263			14	Rev A
Construction	Job Title	Design exan	nple	•			
Silwood Bark Accest Barke SI 5 70N	Subject	Frame unbr	aced out of	f plane			
Telephone: (01344) 623345		~~~	<u> </u>				
	Client	SCI	Made by	PRS		Date	Dec 1998
			Checked by	GC		Date	Dec 1998
The moment about the y-y axis du	ie to wir	nd loads	= 1	10.1 kNm			
Applying the wind load about the	minor a	ixis only					
$\frac{F_c}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{324}{678} \%$	$\frac{35.9}{150}$	$\% \ \frac{10.1}{47.9}$ ' 0.	93 < 1			BS .	5950-1:1990 4.7.7
Dead load plus wind loading							
Design load at ULS $F_c = T$	1.4 × 15	$59 + 1.4 \times 5.1$	6 = 2	230 kN			Table B.8 and B.2
Design moment at ULS							
Due to eccentricity							
$M_x = 1.4 \times 81 (0.1 + 0.1)$	=	22.68 kNm					
Due to 10% restraint							
$M_x = 1.4 \times 12.2$	=	<u>17.1 kNm</u>					Table B.6
Total	=	39.78 kNm					
Divide moment equally between u	pper and	d lower column	lengths				
M_x	=	<u>19.89 kNm</u>					
Moment about y-y axis due to win	nd =	$M_y = 1.4 \times 8$	8.4 = 1	11.76 kNn	n		Table B.6
Applying the wind load about the	minor a	uxis only					
$\frac{F}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{230}{678} \%$	6 <u>19.89</u> 150	% <u>11.76</u> ,	0.71 < 1		OK	BS .	5950-1:1990 4.7.7
<u>Use 203 × 203 × 52 UC S275</u>							
C.3.2 Storey 1							
Dead load plus imposed load plus	notiona	ul forces					
Design load at ULS $F_c = D$	1.4 × 33	$32 + 1.6 \times 20$	98 = 2	798 kN			Table B.8
Design moment at ULS							

The Steel	Job No:	PUB 26	3		Page	6	of	14	Rev A
Construction	Job Title	Design	exan	nple					
Silwood Park Ascot Berks SI 5 70N	Subject	Frame u	unbr	aced out of	^c plane	?			
Telephone: (01344) 623345								<u> </u>	D 1000
	Client	SCI		Made by	ŀ			Date	Dec 1998
				Checked by	(зC		Date	Dec 1998
Due to eccentricity (assuming 254	4 mm dee	p section)							
$M_x = (1.4 \times 81 + 1.6 \times 9)$	00) (0.125	5 + 0.1)	=	57.9 ki	Nm				
Due to 10% restraint									
$M_x = (1.4 \times 12.2 + 1.6 \times$	13.5)		=	<u>38.7 k</u>	<u>Nm</u>				
		Total	=	96.6 ki	Nm				
Divide moment equally between u	pper and	lower col	lumn	lengths					
		M_x	=	<u>48.3 k</u> i	<u>Nm</u>				
Moment about y-y axis due to not	tional loa	$d M_y$	=	11.5 ki	Nm				Table B.6
$L = 5 m$ $L_{Ex} = 1.5$ $L_{Ey} = 1.5$	L L	= 7.5 = 7.5	m m						
<u>Try 254 \times 254 \times 89 UC S275 ste</u>	<u>eel</u>								
For $L_E = 7.5 m A_g$	p _c	= 117	0 kN	τ					Ref 11
$\begin{array}{ccccc} For L &=& 5 m & M_{bs} \\ p_y & Z \end{array}$	\mathbf{Z}_{v}	= 316 = 100	kNn kNn	n n					Ref 11 Ref 11
Applying the notional force about	t the mine	or axis on	ly						
$\frac{F}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{798}{1170}$	% <u>51.1</u> <u>316</u>	% <u>11.5</u> <u>1009</u>	' (0.96 < 1		0)K	BS :	5950-1:1990 4.7.7
Dead load plus imposed load plus	wind loa	uding							
Design load at ULS $F_c = 1$	1.2 (332	+ 208 +	22.7) = (575 kN	V			Tables B.8 and B.2
Design moment at ULS									
Due to eccentricity									
$M_x = 1.2 (81 + 90) (0.1 + 1)$	0.125)	= 46.2	17 k]	Nm					
Due to 10% restraint									
$M_x = 1.2 (12.2 + 13.5)$		= <u>30.8</u>	8 kN	<u>m</u>					
Tot	al	= 76.9	97 k l	Nm					

	1			1				-		
The Steel	Job No:	PUB 263		Page	7	of	14	Rev	A	
Construction	Job Title Design example									
	Subject Frame unbraced out of plane									
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345										
Fax: (01344) 622944	Client	SCI	Made by	P	RS		Date	Dec	1998	
CALCULATION SHEET			Checked by	(GC		Date	Dec	1998	
CALCULATION SHEETIndex byI RSDateDet 1998Divide moment equally between upper and lower column lengths $M_x = 38.5 \text{ kNm}$ $M_x = 38.5 \text{ kNm}$ Moment about the y-y axis due to wind loads $M_y = 22.8 \text{ kNm}$ Applying the wind load about the minor axis only $\frac{F_c}{A_g p_c} \% \frac{M_x}{M_{bs}} \% \frac{M_y}{p_y Z_y} = \frac{675}{1170} \% \frac{38.5}{316} \% \frac{22.8}{100} + 0.93 < 1$ OK BS 5950-1:1990 $4.7.7$ Dead load plus wind loadingNot criticalUse 254 \times 254 \times 89 UC S275 steel $C.4$ Minor axis beamsThe beams framing into the minor axis of the columns will be subjected to relativaly little loading Their size is likely to be determined by the relatival.										
(1) (5)	5									
$ \begin{array}{c c} h_1 = 4 m \\ & \ddots \\ & & \ddots \\ & & & \ddots \\ & & & & \ddots \\ & & & &$										
$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	3									
$h_2 = 4 \text{ m}$ \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m} \mathfrak{m}	7									
ⓐ 305 € 1451× × ×			_							
$h_4 = 4 \text{ m} \begin{vmatrix} x & \\ y \\ y \\ y \\ y \\ y \\ z \\ z \\ z \\ z \\ z$	3									
	^m → ^L 3 ⁼	$\downarrow^{6 \text{ m}}$	ⁿ →							
Figure C.2 Column sizes satisfyi	ng ULS d	lesign requirer	nents							
							1			

The Steel	Job No: <i>PUB 263</i>		Page 8 of	14	Rev A				
Construction	Job Title Design example								
	Subject Frame unbr								
Telephone: (01344) 623345		T		1					
Fax: (01344) 622944	Client SCI	Made by	PRS	Date	Dec 1998				
CALCULATION SHEET		Checked by	GC	Date	Dec 1998				
$\begin{array}{rcl} At \ 1 & (I_{bx})_{1} \ /L_{1} & > & (I_{cy})_{1} \ /h_{1} \\ & (I_{bx})_{1} \ /6 & > & 1778/4 \\ & (I_{bx})_{1} \ > & 1778 \times 6/4 = \\ & & \underline{Try \ 254 \times 102 \times 22 \ UB} \ (I_{bx})_{2} \ /L_{1} & > & (I_{cy})_{1} \ /h_{1} \\ & & (I_{bx})_{2} \ /6 & > & 1778/4 \ + \end{array}$									
$(I_{bx})_2 > 2 \times 1778 \times 6/$	$/4 = 5334 \text{ cm}^4$								
$\frac{Try\ 305\ \times\ 102\ \times\ 28\ UB}{I}$	$I_{bx} = 5366 \ cm^4$								
At 3 $(I_{bx})_3 / L_1 > (I_{cy})_2 / h_2$	$+ (I_{cy})_3 / h_3$								
$(I_{bx})_3 / 6 > 1778 / 4 +$	- 4857/4								
$(I_{bx})_3 > (1778 + 4857)$ Tray 356 \times 127 \times 30 UB (1)	$\times 6/4 = 9952.5 \text{ cm}^4$								
$\frac{11y330\times127\times390B}{11}$	$I_{bx} = 10170 \text{ cm}$								
$At \ 4 \ (I_{bx})_4 \ /L_1 > (I_{cy})_3 \ /h_3$	$+ (I_{cy})_4 / h_4$								
$(I_{bx})_4 / 0 > 485 / / 4 + $	+ 4837/3 + 4857/5) × 6 = 1311	A cm ⁴							
$\frac{(I_{bx})_{4}}{Trv \ 406 \ \times \ 140 \ \times \ 46 \ UB \ (I_{bx})_{4}}$	$+ 483773) \times 0 = 1311$ $I_{\rm tr} = 15690 \ cm^4$	4 CM							
Similarly it can be shown that add the frame will satisfy the remain relative stiffness.	opting the same section nder of the requiremen	size at each nts of Section	n level across on 3.1.2 for						
Check sizes considering applied la	loads								
<u>Roofs</u>									
Design moment at end of beam d	lue to wind loading 1.4	× 4.16 =	5.8 kNm		Table B.3				
Beam unrestrained and unloaded	l								
$L_E = 0.85 \times 6 = 5.1$	1 m			BS 5	5950-1:1990 Table 9				
Use roof beam: $254 \times 102 \times 254$	22 UB S275 steel								
For $n = 1.0$ $L_E = 5.1$	$1 m M_b = 1$	6.1 kNm			Ref 11				
For $\$ = -1.0$ $m = 0.4$	13			BS 5	5950-1:1990 Table 18				
$\overline{M} = m M = 0.4$	$43 \times 5.8 \qquad = \qquad 2$.49 kNm <	16.1 OK						

The Steel	Job No: <i>PUB 263</i>	Page 9 of	14 Rev A							
Construction	Job Title Design example									
Silwood Park Accot Barks SL5 70N	Subject Frame unbraced out of plane									
Telephone: (01344) 623345		DDC	<u> </u>							
	Client SCI Made by		Date Dec 1998							
	Checked by	GC	Date Dec 1998							
<u>3rd Storey</u>										
Design moment = 1.4	$\times 12.6 \qquad = \qquad 17.6 \ kN$		Table B.3							
Use beam: $305 \times 102 \times 28$ UB	S275 steel									
$L_E = 0.85 \times 6 = 5.1$	m									
For $n = 1.0$ $L_E = 5.1$	$M_b = 24.6 \ kNm$		Ref 11							
$\overline{M} = m M = 0.4$	$3 \times 17.6 = 7.57 < 24.6$	kNm OK								
2nd Storey										
Design moment = 1.4	$\times 20.4 \qquad = \qquad 28.6 \ kN$		Table B.3							
Use beam: 356 × 127 × 39 UB	S275 steel									
$L_E = 0.85 \times 6 = 5.1$	m									
For $n = 1.0$ $L_E = 5.1$	$M_b = 54.1$		Ref 11							
\overline{M} = 0.43 × 28.6 =	12.3 < 54.1	OK								
<u>1st Storey</u>										
Design moment = 1.4	$\times 31 = 43.4 \ kNm$									
Use beam: $406 \times 140 \times 46$ UB	S275 steel									
$L_E 0.85 \times 6 = 5.1 \ m$										
For $n = 1.0$ $L_E = 5.1$	$M_b = 80.4$		Ref 11							
\overline{M} = 0.43 × 43.4 =	18.66 < 80.4	ОК								
C.5 Major axis beams										
The beams framing into the majo	or axis of the columns will be des	igned in the								
same manner as those for the fra	me considered in Appendix B.									

The Steel	Job No:	PUB 263		Page 🛽	0 of	14	Rev A
Construction	Job Title	Design exan					
Silwood Bark, Acast, Barka SI 5, 70N	Subject	Frame unbr					
Telephone: (01344) 623345		~~~	1				
	Client	SCI	Made by	PR	RS	Date	Dec 1998
CALCOLATION SHEET			Checked by	G	С	Date	Dec 1998
C.6 Design of minor axis beam	to colum	n connections					
The design of the minor axis conn loading, as there is no other appl	ections wi ied load o	ill be governed on the minor o	l in this cas axis beams.	e by the	wind		
<u>Roof</u> $M = 1.4 \times 4.1$	6 = 5.8	kNm Shear	= 5.8/.	3 = 1.	.9 kN		Table B.3
$\underline{3rd \ Floor} M = 1.4 \times 12$.6 = 17.0	s kNm Sl	hear =	= 5.	9 kN		
$\underline{2nd \ Floor} M = 1.4 \times 20$.4 = 28.6	s kNm Sl	hear =	= 9.	5 kN		
$\underline{1st \ Floor} M = 1.4 \times 31$.0 = 43.4	4 kNm Sl	hear =	= 14.	5 kN		
Connections may be varied at each and the required moment capacity	h floor le v.	vel to suit the	beam and	column	sizes		
At the first floor level the connect and a shear of 14.5 kN.	ion is req	uired to resist	a moment	of 43.4	kNm		
Considering the standard connects a 12 mm flush end plate with a 140 \times 46 UB beam has the follow	ion detail single ro wing capa	s given in Apj w of M20 ten ucities:	pendix D, f sion bolts	from pag for a 4	ge 67 06 ×		
Moment 69 kNm > 43.4 kNm	!				OK		
Shear 258 kN > 14.5 kN					ОК		
The 'column side' of the connection should comprise a 25 mm stiffened plate, detailed according to the guidance given in Section D2.							
C.7 Design of major axis beam	to colum	n connections					
The design of the major axis beam braced about the minor axis (see	to colum Section B	n connections 8.9).	will be as j	for the f	frame		

The Ste	el		7 Job No	D: PUB 263		Page 11 of	14	Rev	A
Constru	iction	Z	Job Ti	tle Design exan	L				
Institut	e		Subjec	t Frame unbr	aced out of	[°] plane			
Silwood Pa Telephone:	rk, Ascot, Ber (01344) 6233	ks SL5 7QN 345			1				
Fax: (0134	4) 622944		Client	SCI	Made by	PRS	Date	Dec	1998
CALCUL	ATION SH	IEET			Checked by	GC	Date	Dec	1998
C.8 Ser	viceability l	limit state							
<u>Sway due</u>	to wind -	<u>minor axis</u>							
Using the	method fo	r plane fra	mes desc	cribed in Section	<i>B.10</i> .				
	254 v	102 x 22 1	B		k	b4 .			
16.6 kN -	\rightarrow		5 02 02	16.6 ၊ တို့ပ္ခ	k_{c4}	4.0			
17.0 kN -	→ <u>305 x</u>	102 x 28 U	B 12 2	لرين × 17.0 ا س	$\langle N \rightarrow k$				
14.2 kN -	→ 356 ×	127 x 3 <u>9 U</u>	в <u>8 ×</u>	[®] × 14.2 I	$k \sim k$				
13 0 kN -	406 x	140 x 46 U	а 305 305		k_{c2} k	4.0			
10.0 KN -			305 x x 118	× 89 × 89 ×	k _{c1}	5.0			
	L .				\bot	_ V _			
	< 0.0 >	<u> </u>		<u>−−−−</u> >					
Figure C.	3 Substitut	te frame fo	r SLS cl	heck					
Table C.1	Beam sti	iffnesses							
					Г	2			
Storey	I_b (cm)	L^{4}) $L($	(cm)	$K_b = \frac{3E}{I}$	I_b	K_b (cm ³)			
	29.4		00	L		56.00			
4	2841	6	00	$3 \times 4 \times 284$	1/600	56.82			
3	5360	6 6	00	$3 \times 4 \times 536$	6/600	107.32			
2	1017	0 6	00	$3 \times 4 \times 1012$	70/600	203.4			
1	1569	0 6	00	$3 \times 4 \times 1569$	90/600	313.8			
Table C.2	Column	stiffnesses							
Storey	Ext I	Int I	h (cm)	$k = \mathbf{F}$	I/h	K (cm ³)			
storey	1779	$\frac{1}{2527}$	<i>n</i> (cm)	$\kappa_c - L$	(2527)/400	$\frac{\mathbf{K}_{c}\left(\mathbf{C}\boldsymbol{M}\right)}{27.02}$			
4	1770	2001	400	$(2 \times 1770 \pm 3)$	$2 \times 1770 + 3 \times 2337 / 400$				
<i>3</i>	1//9	2337	400	$(2 \times 1/70 \pm 3)^{2}$	× 2337 J/400	02.22			
2	403/	9039	400	$(2 \times 4037 + 3)$	× 9039J/400	92.23			
Ι	4857	9059	500	$(2 \times 4857 + 3 \times$	(9059)/500	73.78			

The	Steel		\square		Job No:	PUB 263		Page	<i>12</i> of	14	Rev 🧹	A		
Cons	structio	n	\backslash	$\sum \ell$	Job Titl	b Title Design example								
Insti	tute				Subject	Frame unbr	aced out of	f plan	е					
Silwoo Teleph	d Park, As one: (0134	cot, Be 4) 623	erks SL 3345	5 7QN										
Fax: (0	1344) 622	2944			Client	SCI	Made by	1	PRS	Date	Dec	1998		
CALC	CULATIO	ON S	HEET	-			Checked by		GC	Date	Dec	1998		
<u>Stiffne</u> Table	ess distri C.3 Jo	<u>bution</u> int sti	<u>n coej</u> iffnes	<u>fficients</u> s coeffic	cients									
Storey	k,	$\frac{1}{K_c}$	K _c % K _u % K _u % I	K _{bt}	k,	$k_{t} \qquad \qquad k_{b} \cdot \frac{K_{c} \% K_{l}}{K_{c} \% K_{l} \% K_{bb}} \qquad \qquad$								
4	(27.9-	+0)/(27	.9+0+	56.82)	0.33	(27.9+27.9)/(27.9+27.9+107.32))	0.34					
3	(27.9+27	.9)/(27.	9+27.9	9+107.32)	0.34	(27.9+92.2)/(27.9	0+92.2+203.4)	0.37					
2	(92.2+22	7.9)/(92	2.2+27.	9+203.4)	0.37	(92.2+73.8)/(92.2	2+73.8+313.8))	0.35					
1	(73.8+92	2.2)/(73	.8+92.	2+313.8)	0.35	Fixed 1	Base		0					
Table Store	$\begin{array}{c c} C.4 & Sw \\ \hline \\ ey & k_t \end{array}$	vay de	eflecti k _b	ions for N	a rigid J F (kN)	frame <u>)</u> , <u>Fh</u> l	<u>v)</u>	<u>></u>) _{mm}					
4	0.3	3 ().34	1.75	16.6	$ h 12E1 16.6 \times 400 \times 11 12 \times 20500 \times 22 $	$\frac{k_c}{27.9}$ 1/5	n 191	6.8					
3	0.3	4 0	0.37	1.85	33.6	<u>33.6×400×1</u> 12×20500×2	2.85 27.9 1/2	76	14.5					
2	0.3	7 0).35	1.85	47.8	47.8×400×1 12×20500×9	1.85 02.2 1/6	41	6.2					
1	0.3	5	0	1.35	60.8	$\begin{array}{c cccc} \frac{60.8 \times 500 \times 1.35}{12 \times 20500 \times 73.8} & 1/442 & 11.3 \end{array}$								
Tota	al						1/4	38	38.8					
Increa	inse the d	eflecti	ions l	by 50% (to allow	for connection	flexibility.							

The Steel		Job No: PUB 2	63		Page	13	of	14	Rev	A
Construct	tion	Job Title Design example								
Institute		Subject Frame unbraced out of plane								
Silwood Park, Telephone: (01	Ascot, Berks SL5 7QN 1344) 623345			-	-					
Fax: (01344)	622944	Client SCI		Made by	I	PRS		Date	Dec	1998
CALCULA	TION SHEET	Checked by $egin{array}{c} GC \end{array}$						Date	Dec	1998
Table C.5	Sway deflections allo	w for connection f	lexib	ility						
Storey	Rigid frame ()/h)	Wind-moment frame (1.5 */h)	Lii	nit	Chec	k				
4	1/591	1/394	1/3	300	OK					
3	1/276	1/184	1/3	300	Fails	5				
2	1/641	1/477	1/3	300	OK					
1	1/442	1/295	1/3	300	Fails	5				
Total	1/438	1/292	1/3	300	Fails	5				
2. Increa 3. Increa The effectiv for the purp final membe	asing column sizes asing both beam and eness of each of these oses of this example it er sizes are as shown	column sizes. e options will depe t was decided to in in Figures C.4 an	nd on crease d C.5	the frame the colun	e in qu ın size	vestio s. T	on; The			
16.6 kN →	254	x 102 x 22 UB		-						
	JC		254	ي ^{4.0}						
17.0 kN →	4 8 305	x 102 x 28 UB	54 × ;							
14.2 kN →	356	<u>x</u> 127 x 39 <u>U</u> B	5	4.0						
	Ca		54	ي ^{4.0}						
13.0 kN —>		x 140 x 46 UB	254 × 2	× 5.0						
				_ Y _						
	<	≺ → <	>							
Figure C.4	Column and beam siz	zes in minor axis d	lirect	ion						

Figure C.5 Beam sizes for major axis frames

APPENDIX D CONNECTION DETAILS AND CAPACITIES

This Appendix covers connections suitable for connecting beams to the major axis of columns. The information given has been taken from *Joints in steel construction: Moment connections*^[1], where full design procedures and other background information can be found. The shading that is present in the capacity tables in *Joints in steel construction: Moment connections*^[1], which is used to identify sections that are not Class 1, has been omitted in this Appendix. It is not required because the scope of the method has now been broadened to include Class 2 sections (see Section 1.3.2).

D.1 Major axis connections

D.1.1 Notes on use of the tables

In this Appendix, capacity tables are given for connections using M20 8.8 bolts, followed by tables for similar connections with M24 8.8 bolts. All connections adopt either flush or extended end plates that are symmetrical about the centre-line of the beam. A table defining the dimensions for detailing is given on page 81.

The moment capacity of the connections shown may be used for all weights of beams (within the serial sizes indicated), in grade S275 or S355 steel. All end plates are grade S275 steel. Local column capacities must be checked as described below.

For the connection to perform in the intended manner, it is important that plate size and steel grade, minimum bolt and weld sizes, and dimensions between bolt centres etc., are strictly adhered to.

D.1.2 Beam side

Moment capacity

The moment capacity for the beam side of the connection is calculated using the method given in *Joints in steel construction: Moment connections*^[1]. Bolt row forces are shown in the diagram.

An asterisk * indicates that, with the detail illustrated, the beam sections noted can only be used in grade S355 steel. When S275 steel is used, the beam compression flange capacity is less than GF_r .

If the bolt row forces on the column-side limit development of the beam-side forces shown, a reduced moment capacity must be calculated using these reduced forces.

Dimension A

Dimension A is the lever arm from the centre of compression to the lowest row of tension bolts.
SCI-P263

Weld sizes

All flange welds should be full strength, with a minimum visible fillet of 10 mm. All web welds should be at least continuous 8 mm fillets.

D.1.3 Column side

Tension zone

A tick T in the table indicates that the column flange and web in tension have a greater capacity than the corresponding beam. Where the column has a smaller capacity, reduced bolt row forces are shown. A reduced moment may be determined from these lower forces, or the column flange may be stiffened in the tension zone^[1].

The capacities have been calculated assuming that the column top is at least 100 mm above the beam flange or top row of bolts.

Where tension zone stiffening is employed, the bolt row forces must be re-calculated and the compression zone checked $^{[1]}$.

Compression zone

A tick T in the table indicates that the column web has a greater compression capacity than the sum of the bolt row forces (EF_r) . Note that when the column-side tension zone governs the bolt forces, the stated adequacy of the column compression zone is in relation to these *reduced* bolt values. The check assumes a stiff bearing length from the beam side of the connection of 50 mm, regardless of beam size.

S in the table shows that the column web compression capacity (given in brackets) is lower than the sum of the bolt row forces (EF_r) . The web must be stiffened to resist EF_r .

Panel shear capacity

The panel shear capacity is the capacity of the column web. The applied panel shear must take account of beams connecting onto both flanges, and the direction of the applied moments. When the applied moments from two beams are in the same direction, as occurs under wind loading, the panel shear forces from the beams are cumulative (see Figure D.1).

Web panel subject to shear force

Figure D.1 Forces and deformation of web panel

SCI-P263

D.1.4 Contents of capacity tables

Range of connection types

End plate $B \times T$	Туре	Bolt (Grade 8.8)	Tension bolt rows	Page
200 × 12	Flush	M20	1	67
200 × 12	Flush	M20	2	68
250 × 12	Flush	M20	2	69
200 × 12	Extended	M20	2	70
250 × 12	Extended	M20	2	71
200 × 12	Extended	M20	3	72
250 × 12	Extended	M20	3	73
200 × 15	Flush	M24	1	74
200 × 15	Flush	M24	2	75
250 × 15	Flush	M24	2	76
200 × 15	Extended	M24	2	77
250 × 15	Extended	M24	2	78
200 × 15	Extended	M24	3	79
250 × 15	Extended	M24	3	80

Dimensions for detailing are shown on page 81.

SCI-P263

		S275			S355			
	Panel shear capacity	Tension zone F _{r1}	Compression zone	Column serial size	Compression zone	Tension zone F _{r1}	Panel shear capacity	
	(KN)	(kN)				(kN)	(KIN)	
	1000	Т	Т	$356 \times 368 \times 202$	Т	Т	1300	
	849	T	Т	177	Т	T	1110	
	725			153			944	
	605	-		129		-	/88	
	1037	Т	T	$305 \times 305 \times 198$	T	T	1350	
Ð	816			158			1060	
Ō	703			137			910	
S.	503	Ť	Ť	97	Ť	T	649	
umn	882	т	т	254 × 254 × 167	т	т	1150	
	685	т	Т	132	т	т	893	
	551	Т	Т	107	Т	Т	718	
ပိ	434	Т	Т	89	т	т	566	
	360	Т	Т	73	Т	Т	465	
	459	Т	Т	$203\times203\times86$	Т	Т	598	
	353	Т	Т	71	Т	Т	460	
	322	T	T	60	T	T	415	
	272	T	T	52	Т	T T	351	
	245	198	I	46	I	I	316	
	Tension zo	one:						
	F _{r1} T	Column satis	row tension values st	nown for the be	am side			
	xxx	Calculate rec	luced moment of	capacity using the redu	uced bolt row v	alue.		
	Compressi	on zone:						
	Т	Column capa	city exceeds E	F _r .				

SCI-P263

		5	\$275				S 355	5		
	Panel shear	Ten zo	sion ne	Compression	Column serial size	Compression	Ten zo	sion ne	Panel shear	
	capacity (kN)	<i>F</i> _{r1} (kN)	F _{r2} (kN)	zone		zone	<i>F</i> _{r1} (kN)	F _{r2} (kN)	capacity (kN)	
	1000 849 725	T T T	T T T	T T T	356 × 368 × 202 177 153	T T T	T T T	T T T	1300 1110 944	
	605	Т	Т	Т	129	Т	Т	Т	788	
Column side	1037 816 703 595 503	T T T T	T T T T	T T T T	305 × 305 × 198 158 137 118 97	T T T T	н н н н	T T T T	1350 1060 916 775 649	
	882 685 551 434 360	T T T T	T T T T	т т т т т	254 × 254 × 167 132 107 89 73	т т т т т	н н н н	T T T T	1150 893 718 566 465	
	459 353 322 272 245	T T T T 198	T T T 97	т т т т	203 × 203 × 86 71 60 52 46	т т т т т	н н н н н	T T T T	598 460 415 351 316	
	Tension zone: $F_{r1} F_{r2}$ T T Column satisfactory for bolt row tension values shown for the beam side. T Xxx Calculate reduced moment capacity using the reduced bolt row value. Compression zone:									
	Т	Colu	ımn ca	pacity exceeds	EF _r .					

SCI-P263

		9	5275		S3			S355			
	Panel shear	Ten zo	sion ne	Compression	Column serial size	Compression	Ten zo	sion ne	Panel shear		
	capacity (kN)	<i>F</i> _{r1} (kN)	F _{r2} (kN)	zone		zone	<i>F</i> _{r1} (kN)	F _{r2} (kN)	capacity (kN)		
	1000	Т	т	Т	356 × 368 × 202	Т	Т	Т	1300		
	849	т	т	Т	177	Т	т	Т	1110		
	725	т	т	Т	153	Т	Т	Т	944		
	605	Т	Т	Т	129	Т	Т	Т	788		
	1037	Т	Т	Т	$305 \times 305 \times 198$	Т	Т	Т	1350		
	816	т	т	Т	158	Т	т	Т	1060		
e	703	т	т	Т	137	Т	т	т	916		
<u>io</u>	595	Т	т	Т	118	Т	Т	т	775		
S	503	Т	Т	Т	97	Т	Т	Т	649		
um	882	т	т	Т	$254~\times~254~\times~167$	Т	Т	т	1150		
	685	т	т	Т	132	Т	Т	Т	893		
	551	Т	т	Т	107	Т	Т	Т	718		
0	434	Т	Т	Т	89	Т	Т	Т	566		
0	360	Т	Т	Т	73	Т	Т	Т	465		
	459	т	т	Т	$203\times203\times86$	Т	т	Т	598		
	353	т	т	Т	71	Т	т	т	460		
	322	Т	Т	Т	60	Т	Т	Т	415		
	272	Т	Т	S(360)	52	T	Т	Т	351		
	245	198	97	I	46			I	316		
	Tension ze	one:									
	$F_{r1} F_{r2}$										
		Colu	umn sa	tisfactory for bo	olt row tension values	shown for the l	beam s	ide.			
		Calc	culate r	eaucea momen	capacity using the re	aucea poit row	value.				
	Compress	ion zon	e:								
	T	Coli	imn ca	pacity exceeds	EF						
	S (xxx)	Column capacity exceeds EF_r . (xxx) Column requires stiffening to resist <i>GF</i> . (value is the column web capacity).									

SCI-P263

		9	S275				S 355	;	
	Panel shear	Ten zo	sion ne	Compression	Column serial size	Compression	Ten zo	sion ne	Panel shear
	capacity (kN)	<i>F</i> _{r1} (kN)	F _{r2} (kN)	zone		zone	<i>F</i> _{r1} (kN)	<i>F</i> _{r2} (kN)	capacity (kN)
	1000	Т	Т	Т	356 \times 368 \times 202	Т	Т	Т	1300
	849	Т	Т	Т	177	Т	Т	Т	1110
	725	Т	Т	Т	153	Т	Т	т	944
	605	Т	Т	Т	129	Т	Т	Т	788
	1037	т	т	Т	305 \times 305 \times 198	Т	т	т	1350
de	816	т	Т	Т	158	Т	т	Т	1060
sic	703	Т	Т	Т	137	Т	Т	Т	916
	595	Т	Т	Т	118	Т	Т	Т	775
lumn	503	Т	Т	Т	97	Т	Т	Т	649
	882	Т	Т	Т	254 $ imes$ 254 $ imes$ 167	Т	Т	Т	1150
	685	т	Т	Т	132	Т	т	Т	893
ŭ	551	Т	Т	Т	107	Т	Т	Т	718
0	434	Т	Т	Т	89	Т	Т	т	566
	360	Т	206	Т	73	Т	Т	Т	465
	459	Т	т	Т	203 \times 203 \times 86	Т	Т	т	598
	353	т	Т	Т	71	т	т	Т	460
	322	т	191	Т	60	Т	т	202	415
	272	т	181	Т	52	Т	т	190	351
	245	Т	107	Т	46	Т	Т	181	316
	Tension zo	one:							
	$F_{r1}F_{r2}$								
	ТТ	Colu	umn sa	tisfactory for bo	olt row tension values	shown for the l	beam s	ide.	
	Т ххх	Calo	culate r	educed moment	t capacity using the re	duced bolt row	value.		
	Compress	ion zon	ie:						
	Т	Colu	umn ca	pacity exceeds	EF _r .				

SCI-P263

	\$275 \$355								
	Panel	Ten zo	sion ne	Compression	Column serial size	Compression	Ten zo	sion ne	Panel
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	zone		zone	F _{r1} (kN)	F _{r2} (kN)	capacity (kN)
	1000	Т	Т	Т	356 × 368 × 202	Т	Т	Т	1300
	849	Т	т	Т	177	Т	т	т	1110
	725	Т	т	Т	153	Т	т	т	944
	605	Т	Т	Т	129	Т	Т	Т	788
	1037	Т	т	Т	$305 \times 305 \times 198$	Т	Т	т	1350
e	816	Т	Т	Т	158	Т	Т	т	1060
iii iii	703	Т	т	Т	137	Т	т	т	916
0	595	Т	т	Т	118	Т	Т	т	775
	503	Т	Т	Т	97	Т	Т	Т	649
Ľ	882	Т	т	Т	$254 \times 254 \times 167$	Т	Т	т	1150
<u>ا</u>	685	Т	Т	Т	132	Т	Т	т	893
	551	Т	т	Т	107	Т	т	т	718
0	434	Т	т	Т	89	Т	Т	т	566
	360	Т	206	Т	73	Т	Т	Т	465
	459	Т	т	Т	203 × 203 × 86	Т	Т	т	598
	353	Т	т	Т	71	Т	т	т	460
	322	Т	191	Т	60	Т	т	202	415
	272	Т	181	Т	52	Т	Т	190	351
	245	Т	107	Т	46	Т	Т	181	316
	Tension z	one:							
	F _{r1} F _{r2} T T T xxx	$ \begin{array}{c} & F_{r_2} \\ T \\ T \\ xxx \end{array} $ Column satisfactory for bolt row tension values shown for the beam side. Calculate reduced moment capacity using the reduced bolt row value.							
	Compress	npression zone:							
	lт	Coli	ımn ca	pacity exceeds	FF				

SCI-P263

			S27	75				S	355		
	Panel shear	Ter	ision z	one	Compression	Column serial size	Compression	Ter	ision z	one	Panel shear
	capacity (kN)	F _{r1} (kN)	<i>F</i> _{r2} (kN)	F _{r3} (kN)	zone		zone	F _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	capacity (kN)
	1000	Т	Т	Т	Т	356 \times 368 \times 202	Т	Т	Т	Т	1300
	849	Т	Т	Т	Т	177	Т	Т	Т	Т	1110
	725	Т	Т	Т	Т	153	Т	Т	Т	Т	944
	605	Т	Т	Т	Т	129	Т	Т	Т	Т	788
	1037	Т	Т	Т	Т	305 \times 305 \times 198	Т	Т	Т	Т	1350
	816	Т	Т	Т	Т	158	Т	Т	Т	Т	1060
	703	Т	Т	Т	Т	137	Т	Т	Т	Т	916
Ð	595	Т	т	т	Т	118	Т	Т	т	т	775
<u>p</u>	503	Т	Т	Т	Т	97	Т	Т	Т	Т	649
s um	882	Т	Т	Т	Т	254 \times 254 \times 167	Т	Т	Т	Т	1150
	685	Т	Т	Т	Т	132	Т	Т	Т	Т	893
	551	Т	Т	Т	Т	107	Т	Т	Т	Т	718
<u>n</u>	434	Т	Т	Т	Т	89	Т	Т	Т	т	566
0	360	Т	206	Т	S (436)	73	Т	Т	Т	Т	465
0	459	Т	Т	Т	т	203 \times 203 \times 86	Т	т	Т	т	598
	353	Т	Т	Т	Т	71	Т	Т	Т	Т	460
	322	Т	191	т	S (440)	60	Т	Т	202	т	415
	272	Т	181	121	S (360)	52	Т	Т	190	т	351
	245	Т	107	90	S (313)	46	S (404)	Т	181	118	316
	Tension z	one:									
	$F_{r1} F_{r2} F_{r3}$										
	ттт	Co	lumn s	satisfa	ctory for bolt ro	ow tension values sho	own for the bea	am sid	e.		
	Т ххх ххх	c Ca	lculate	reduc	ed moment cap	pacity using the reduc	ced bolt row va	alues.			
	Compress	ion zo	ne:								
	т	Co	lumn d	capacit	ty exceeds <i>EF</i> _r .						
	S (xxx)	Co	lumn r	equire	s stiffening to i	resist <i>GF</i> r (value is the	e column web o	capaci	ty).		

SCI-P263

			3 250 × 1	rows M20 8.8 bolts 2 S275 extended end plate
	Beam	n - S275 and S3	355	
	Beam serial size	Dimension 'A' (mm)	Moment capacity (kNm)	
side	686 × 254	520	330	$(F_{r1}) \xrightarrow{155kN} (see notes) \xrightarrow{10} 60 \xrightarrow{10} {$
eam	610 × 229	445	288	$(F_{r3}) 167kN$
ш	533 × 210	372	247	
	457 × 191	297	206	$\begin{array}{c} & & \\$
	457 × 152	294	204	↓↓ ↓↓ ✓(see notes) 40↑ ↓ ↓↓ ↓↓ ✓ ✓ ↓↓ ✓

			S27	/5		S355					
	Panel shear	Ten	ision z	one	Compression	Column serial size	Compression	Ter	nsion z	one	Panel shear
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	zone	00.101 0.20	zone	F _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	capacity (kN)
	1000	Т	Т	Т	Т	356 × 368 × 202	Т	Т	Т	Т	1300
	849	Т	Т	Т	Т	177	Т	Т	Т	Т	1110
	725	Т	Т	Т	Т	153	Т	Т	т	т	944
	605	Т	Т	Т	Т	129	Т	Т	Т	Т	788
	1037	Т	Т	Т	Т	$305 \times 305 \times 198$	Т	Т	Т	Т	1350
	816	Т	Т	Т	Т	158	Т	Т	Т	Т	1060
	703	Т	Т	Т	Т	137	Т	Т	т	т	916
Ð	595	Т	Т	Т	Т	118	Т	Т	т	т	775
<u>p</u>	503	Т	Т	Т	Т	97	Т	Т	Т	Т	649
s um	882	Т	Т	Т	Т	254 \times 254 \times 167	Т	Т	Т	Т	1150
	685	Т	Т	Т	Т	132	Т	Т	Т	Т	893
	551	Т	Т	Т	Т	107	Т	Т	т	т	718
	434	Т	Т	Т	Т	89	Т	Т	т	т	566
0	360	Т	206	Т	S (436)	73	Т	Т	Т	Т	465
U U	459	Т	Т	Т	Т	203 × 203 × 86	Т	Т	Т	Т	598
	353	Т	Т	Т	S (512)	71	Т	Т	т	т	460
	322	Т	191	Т	S (440)	60	Т	Т	202	т	415
	272	Т	181	121	S (360)	52	S (464)	Т	190	Т	351
	245	Т	107	90	S (313)	46	S (404)	Т	181	118	316
	Tension z	one:									
	$F_{r1} F_{r2} F_{r3}$										
	ттт	Co	lumn s	atisfa	ctory for bolt ro	ow tension values sh	own for the bea	am sid	le.		
	Т ххх ххх	c Ca	lculate	reduc	ed moment cap	pacity using the redu	ced bolt row va	alues.			
	Compress	ion zo	ne:								
	т	Co	lumn d	apacit	y exceeds <i>EF</i> _r .						
	S (xxx)	Co	lumn r	equire	s stiffening to i	resist <i>GF</i> , (value is th	e column web o	capaci	ty).		

SCI-P263

		S275			S355				
	Panel shear	Tension zone	Compression	Column serial size	Compression	Tension zone	Panel shear		
	capacity (kN)	F _{r1} (kN)	zone		zone	F _{r1} (kN)	capacity (kN)		
Column side	1000 849 725 605 1037 816 703 595 503 882 685 551 434 360 459 353 322 272 245 Tension z <i>F</i> _{r1} T XXX	T T T T T T T T T T T T T T 297 265 204 one: Column satisfa Calculate reduction	T T T T T T T T T T T T T T T T T T T	$\begin{array}{c} 356 \times 368 \times 202 \\ 177 \\ 153 \\ 129 \\ 305 \times 305 \times 198 \\ 158 \\ 137 \\ 118 \\ 97 \\ 254 \times 254 \times 167 \\ 132 \\ 107 \\ 89 \\ 73 \\ 203 \times 203 \times 86 \\ 71 \\ 60 \\ 52 \\ 46 \\ \end{array}$	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	1300 1110 944 788 1350 1060 916 775 649 1150 893 718 566 465 598 460 415 351 316		
	Т	Column capaci	ty exceeds <i>EF</i> r						

SCI-P263

			S275				S	355	
	Panel shear	Ten	sion zone	Compression	Column serial size	Compression	Ten	ision zone	Panel shear
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	zone		zone	F _{r1} (kN)	F _{r2} (kN)	capacity (kN)
Column side	1000 849 725 605 1037 816 703 595 503 882 685 551 434 360 459 353 322 272 245 Tension zer Fr1 Fr2 T T xxx Compress T	(KN) T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T S (436) T S (512) S (440) S (360) T C tory for bolt re- re- ced moment cap	$356 \times 368 \times 202 \\ 177 \\ 153 \\ 129 \\ 305 \times 305 \times 198 \\ 158 \\ 137 \\ 118 \\ 97 \\ 254 \times 254 \times 167 \\ 132 \\ 107 \\ 89 \\ 73 \\ 203 \times 203 \times 86 \\ 71 \\ 60 \\ 52 \\ 46 \\ 0 \\ 52 \\ 46 \\ 0 \\ 52 \\ 46 \\ 0 \\ 52 \\ 46 \\ 0 \\ 52 \\ 50 \\ 0 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51$	T T T T T T T T T T T T T T T T S (464) T	(KN) T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T 198 116	1300 1110 944 788 1350 1060 916 775 649 1150 893 718 566 465 598 460 415 351 316
	S (<i>xxx)</i>	Co	lumn reduce	d stiffening to r	resist <i>EF</i> r (value is the	e column web o	capaci	ty).	

SCI-P263

			S275		S355					
	Panel shear	Ten	ision zone	Compression	Column serial size	Compression	Tension zone		Panel shear	
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	zone	001121 0120	zone	F _{r1} (kN)	F _{r2} (kN)	capacity (kN)	
Column side	(kN) 1000 849 725 605 1037 816 703 595 503 882 685 551 434 360 459 353 322 272 245 Tension z <i>F</i> _{r1} <i>F</i> _{r2} T T T X XX Compress	(kN) T T T T T T T T T T T T 297 265 204 one: Co Ca ion zo	(kN) T T T T T T T T T T T T T	T T T T T T T S (553) T T S (557) S (436) T S (557) S (436) T S (512) S (440) S (360) T S (360) T	$\begin{array}{c} 356 \times 368 \times 202 \\ 177 \\ 153 \\ 129 \\ 305 \times 305 \times 198 \\ 158 \\ 137 \\ 118 \\ 97 \\ 254 \times 254 \times 167 \\ 132 \\ 107 \\ 89 \\ 73 \\ 203 \times 203 \times 86 \\ 71 \\ 60 \\ 52 \\ 46 \\ \end{array}$	T T T T T T T T T T T T T S (563) T S (563) T S (568) S (464) T S (464) T	(kN) T T T T T T T T T T T T T	(kN) T T T T T T T T T T T T T	(kN) 1300 1110 944 788 1350 1060 916 775 649 1150 893 718 566 465 598 460 415 351 316	
	TColumn capacity exceeds EF_r .S (xxx)Column reduced stiffening to resist EF_r (value is the column web capacity).									

SCI-P263

			S275				S355				
	Panel shear	Tension zone		Compression	Column serial size	Compression	Ter	nsion zone	Panel shear		
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	zone		zone	F _{r1} (kN)	F _{r2} (kN)	capacity (kN)		
Column side	(kN) 1000 849 725 605 1037 816 703 595 503 882 685 551 434 360 459 353 322 272 245	(kN) T T T T T T T T T T T T T T T T T T T	(kN) T T T T T T T T T T T T T	T T T T T T T T T S (436) T T T T T	$356 \times 368 \times 202 \\ 177 \\ 153 \\ 129 \\ 305 \times 305 \times 198 \\ 158 \\ 137 \\ 118 \\ 97 \\ 254 \times 254 \times 167 \\ 132 \\ 107 \\ 89 \\ 73 \\ 203 \times 203 \times 86 \\ 71 \\ 60 \\ 52 \\ 46 \\ \end{cases}$	T T T T T T T T T T T T T T	(kN) T T T T T T T T T T T T T T T T T T T	(kN) T T T T T T T T T T T T T	(kN) 1300 1110 944 788 1350 1060 916 775 649 1150 893 718 566 465 598 460 415 351 316		
	Tension zone: $F_{r1} F_{r2}$ T T Column satisfactory for bolt row tension values shown for the beam side. T Xxx Calculate reduced moment capacity using the reduced bolt row value. Compression zone: T Column capacity exceeds EF_r . S (xxx) Column reduced stiffening to resist EF_r (value is the column web capacity).										

SCI-P263

			S275				S	355	_				
	Panel shear	Tension zone		Compression	Column serial size	Compression	Ter	ision zone	Panel shear				
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	zone		zone	F _{r1} (kN)	F _{r2} (kN)	capacity (kN)				
Column side	$\begin{array}{c} 1000\\ 849\\ 725\\ 605\\ 1037\\ 816\\ 703\\ 595\\ 503\\ 882\\ 685\\ 551\\ 434\\ 360\\ 459\\ 353\\ 322\\ 272\\ 245\\ \hline \textbf{Tension ze}\\ F_{r1}F_{r2}\\ \textbf{T}\\ \textbf{T}\\ \textbf{T}\\ \textbf{X}XX\\ \hline \textbf{Compress}\end{array}$	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T S (436) T S (512) S (440) S (360) T S (360) T	$356 \times 368 \times 202$ 177 153 129 $305 \times 305 \times 198$ 158 137 118 97 $254 \times 254 \times 167$ 132 107 89 73 $203 \times 203 \times 86$ 71 60 52 46 pacity using the reduced	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T 289 T 293 269 215 129	1300 1110 944 788 1350 1060 916 775 649 1150 893 718 566 465 598 460 415 351 316				
	 Column capacity exceeds <i>EF_r</i>. S (xxx) Column requires stiffening to resist <i>EF_r</i> (value is the column web capacity). 												

SCI-P263

			S27	75			S355				
	Panel shear	Tension zo		one	Compression	Column serial size	Compression	Tension zone			Panel shear
	capacity (kN)	<i>F</i> _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	zone		zone	<i>F</i> _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	capacity (kN)
	1000	Т	Т	Т	Т	356 \times 368 \times 202	Т	Т	Т	Т	1300
	849	Т	Т	Т	Т	177	Т	Т	Т	Т	1110
	725	Т	т	т	Т	153	Т	Т	т	т	944
	605	Т	Т	Т	S (<i>605)</i>	129	Т	Т	Т	Т	788
	1037	Т	Т	Т	Т	$305~\times~305~\times~198$	Т	т	Т	Т	1350
	816	Т	T	T	T	158	T	Т	T	T	1060
	703	T	T	T	Т	137	T	T	T	T	916
e	595		<u> </u>	<u> </u>	S (692)	118	I		<u> </u>	<u> </u>	//5
id	503	1	I		S (553)	97	S (713)	1			649
S	882	Т	Т	Т	Т	$254~\times~254~\times~167$	Т	Т	Т	Т	1150
	685	Т	Т	Т	Т	132	Т	Т	Т	т	893
Σ	551	Т	т	т	Т	107	Т	Т	т	т	718
	434	Т	301	Т	S (557)	89	S (725)	Т	Т	Т	566
0	360	Т	274	Т	S (<i>436)</i>	73	S (563)	Т	289	Т	465
0	459	Т	Т	Т	S (701)	$203~\times~203~\times~86$	Т	Т	Т	Т	598
	353	Т	276	Т	S (<i>512</i>)	71	S (666)	Т	293	Т	460
	322	Т	221	т	S (440)	60	S (<i>568)</i>	Т	269	т	415
	272	Т	131	118	S (<i>360)</i>	52	S (464)	Т	215	152	351
	245	Т	100	90	S (<i>313)</i>	46	S (404)	Т	129	116	316
	Tension z	one:									
	$F_{r1} F_{r2} F_{r3}$										
T T T Column satisfactory for bolt row tension values shown for the beam sid									э.		
	Т ххх х	xx Ca	lculate	reduc	ed moment cap	pacity using the reduc	ced bolt row va	lues.			
	Compression zone:										
	т	Co	lumn d	capacit	ty exceeds <i>EF</i> _r .						
	S (xxx) Column requires stiffening to resist EF_r (value is the column web capacity).										

SCI-P263

				S275			S355				
	Panel shear	Tension zone		one	Compression	Column serial size	Compression	Tension zone			Panel shear
	capacity (kN)	F _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	zone	zone		F _{r1} (kN)	F _{r2} (kN)	F _{r3} (kN)	capacity (kN)
	1000	Т	Т	Т	Т	356 \times 368 \times 202	Т	Т	Т	Т	1300
	849	Т	Т	Т	Т	177	Т	Т	Т	Т	1110
	725	Т	Т	Т	S (766)	153	Т	Т	Т	Т	944
	605	Т	Т	Т	S (605)	129	S (<i>788)</i>	Т	Т	Т	788
	1037	Т	Т	Т	Т	$305~\times~305~\times~198$	Т	Т	Т	Т	1350
	816	Т	Т	Т	Т	158	Т	Т	Т	Т	1060
	703	Т	Т	Т	Т	137	Т	Т	Т	Т	916
Ð	595	Т	Т	Т	S (<i>692)</i>	118	Т	Т	Т	т	775
<u>p</u>	503	Т	Т	Т	S (<i>553)</i>	97	S (713)	Т	Т	Т	649
S	882	Т	Т	Т	Т	$254~\times~254~\times~167$	Т	Т	Т	Т	1150
2	685	Т	Т	Т	Т	132	Т	Т	Т	т	893
3	551	Т	Т	Т	S (744)	107	Т	Т	Т	Т	718
	434	Т	301	Т	S (557)	89	S (725)	Т	Т	Т	566
0	360	Т	274	182	S (436)	73	S (563)	Т	289	Т	465
0	459	Т	Т	Т	S (701)	$203~\times~203~\times~86$	Т	Т	Т	Т	598
	353	Т	276	Т	S (<i>512)</i>	71	S (666)	Т	293	Т	460
	322	Т	221	155	S (<i>440)</i>	60	S (<i>568)</i>	Т	269	264	415
	272	Т	131	118	S (<i>360)</i>	52	S (464)	Т	215	152	351
	245	204	100	90	S (<i>313</i>)	46	S (<i>404)</i>	Т	129	116	316
	Tension z	one:									
	$F_{r1} F_{r2} F_{r3}$										
	 T T Column satisfactory for bolt row tension values shown for the beam side. T xxx xxx Calculate reduced moment capacity using the reduced bolt row values. 										
	Compression zone:										
	T Column capacity exceeds <i>EF</i> .										
	S (xxx) Column requires stiffening to resist EF_r (value is the column web capacity).										

SCI-P263

Standard connections - dimensions for detailing

	Dimension a ₁ (mm)	Dimension a ₂ (mm)	Flush end plate overall depth D _F (mm)	Extended end plate overall depth D _E (mm)						
686 × 254 × 170 152 140 125	575 570 565 560	395 390 385 380	750	880	a ₁ D _F					
610 × 229 × 140 125 113 101	500 490 490 480	320 310 310 300	670	800						
533 × 210 × 122 109 101 92 82	425 420 415 415 410	245 240 235 235 230	600	730						
457 × 191 × 98 89 82 74 67	350 345 340 340 335	170 165 160 160 155	520	650						
457 × 152 × 82 74 67 60 52	345 340 340 335 330	165 160 160 155 150	520	650						
406 × 178 × 74 67 60 54	295 290 285 285	115 110 105 105	300	600						
406 × 140 × 46 39	280 275	100 95	450	580						
356 × 171 × 67 57 51 45	245 240 235 230		420	550	a ₁ D _E					
356 × 127 × 39 33	235 230		410	540						
305 × 165 × 54 46 40	190 185 185		360	490						
305 × 127 × 48 42 37	190 185 185		360	490						
305 × 102 × 33 28 25	195 190 185		370	500						
254 × 146 × 43 37 31	140 135 135		310	440						
254 × 102 × 28 25 22	140 135 135		310	440						
See capacity table diagram for plate thickness and other dimensions appropriate to the moment capacities. All plates to be S275.										

SCI-P263

Typeset and page make-up by The Steel Construction Institute, Ascot SL5 7QN Printed and bound by Thanet Press, Margate CT9 1NU 1500 12/99 BCB766