	1							1
	Job No.	BCF 196		Sheet	1	of	25	Rev
SCI	Title	Fire Resistance design	1					
Steel Knowledge	Subject	Example 1 – Two-stor	rey offic	e build	ing			
Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 636525 Fax: (01344) 636570		r	Made b					ep 2013
CALCULATION SHEET	Client							-
			Checke	α by D	GB	Dat	e N	ov 2013
1 TWO STORE	Y OFI	FICE BUILDIN	NG					
1.1 Arrangement and	l loadi	ng						
The arrangement of the steel fram in Figures 1.1 to 1.5. Two layour with the external columns inside each plan and sectional elevation outside the cladding ('Solution H	ts are sho the clad 1) and or	own in the Figures, one ding ('Solution A', sho	e arrang own on	ement half of				
The steelwork is to be verified designed for the actions shown in Table 1.1, using the values of partial factors given by the UK National Annex to EN 1990, as summarised in Table 1.2.								
The beam and column sizes shown in the Figures were determined by considering the structure as a braced frame, comprising non-composite steel beams and columns supporting a precast concrete floor slab. The initial design was carried out at ambient temperature.								
Table 1.1 Actions on the firs	t floor							
Actions on the first floor								
Permanent actions								
Precast units (floor slab)		2.9 kN/m ²						
Screed		1.2 kN/m ²						
Self-weight of floor beam		0.3 kN/m ² 0.6 kN/m ²						
Ceiling and services Variable actions								
Occupancy load		2.5 kN/m ²						
Partitions		0.8 kN/m ²						
Table 1.2 Partial factors on a	octions							
Factor Value								
γ _G 1.35						1		
γα 1.50						1		
						1		
						1		
						1		
						1		
						1		
						1		
						1		

Example 1 – Two storey office building	Sheet	2	of 25	Rev
1.2 Verification at elevated temperature				
This worked example demonstrates the verification at elevated temper beam, a column and a beam to column connection.	erature of	fa		
Two verifications of the beam and column are demonstrated:				
• Unprotected.				
• Protected with board.				
The verifications follow a simplified calculation model, as permitted $4.1(2)$ of EN 1993-1-2.	by claus	e		
The verifications use the standard temperature-time curve given in El clause 3.2.1 (1).	N 1991-1	1-2		
A complementary worked example demonstrates the use of an advan calculation model to verify an unprotected external column.	ced			
1.2.1 Verification process				
The verification process for beams may be summarised as:				
• Under fire conditions, a reduced design value of actions is calcula	ited.			
• The critical temperature for the steel member under the reduced d of actions is determined.	esign va	lue		
• The time taken for the steel to reach this critical temperature is de using an incremental process, as the steel temperature depends on temperature (which itself depends on time) and the transfer of heat steel (the convective and radiative heat flux).	the gas	1		
The verification process for columns is similar to that for beams:				
• Under fire conditions, a reduced design value of actions is calcula	ited.			
• A reduced buckling length may be assumed, depending on the sto consideration and the compartmentalisation in the building.	rey unde	er		
• The reduced design resistance is calculated at elevated temperature for changes in material strength and properties as necessary.	re, allow	ing		
• The time taken for the design resistance to drop below the design calculated using an incremental process, as the steel temperature a properties depend on the gas temperature (which itself is depends and the transfer of heat to the steel.	and)		
The verification process for a connection may be summarised as:				
• Under fire conditions, a reduced design value of actions (in this cashear force on the connection) is calculated.	ase, the			
• The temperature of each connection component is calculated, base distance of the component from the bottom (hot) flange.	ed on the	e		
• Reduction factors are determined for the bolts, welds and other co components, based on the calculated temperature.	onnectior	ı		
• The design resistance of the connection is determined from the (red design resistance of each of the connection components.	educed)			

Example 1 – Two storey office building	Sheet 8	of 25	Rev
1.3 Structural fire design			
The building is a two-storey office building. The floor of the top store above ground level. According to the Table A2 of Approved Docume 30 minute minimum fire resistance is required.	•	App Doc	с. В
1.4 Fire resistance of first floor beam			
1.4.1 Normal temperature			
Beam size $533 \times 210 \times 122$ UKB, S275			
Beam spacing 7.5 m			
Beam span 7.5 m			
Permanent action on first floor:			
$G_{\rm k}$ = 2.9 + 1.2 + 0.3 + 0.6 = 5.0 kN/m ²			
Variable action on first floor:			
$Q_{k,1} = 2.5 + 0.8 = 3.3 \text{ kN/m}^2$			
The design combination value of actions, using expression 6.10 from is given by:	EN 1990	EN 1990)
$f_{\rm d}$ = 1.35 × 5.0 + 1.5 × 3.3 = 11.7 kN/m ²			
Note that according to the UK National Annex to EN 1990, the design combination value of actions could be calculated as the most onerous from expression 6.10a and 6.10b. In this instance, 6.10b is critical, re a design value of 11.2 kN/m^2 . If the pair of expression 6.10a and 6.10 considered, the reduction factor, calculated in Section 1.4.2 below is modified.	value sulting in b are		
Design bending moment			
$M_{\rm Ed} = \frac{f_{\rm d}L^2}{8} = \frac{(11.7 \times 7.5) \times 7.5^2}{8} = 617 \rm kNm$			
Bending resistance of UKB section			
From the 'Blue Book':		P363	
$M_{\rm c,y,Rd}$ = 847 kNm			
Note that P363 also indicates that at ambient temperature, the beam is	Class 1.		
1.4.2 Design loading in fire:			
Design moment at the fire limit state			
$M_{ m fi,d}$ = $\eta_{ m fi} M_{ m Ed}$		EN 1993 2.4.2(2)	-1-2
The reduction factor for design load level in the fire situation is given	by:	EN 1993 2.4.2(2)	-1-2
$\eta_{\rm fi} \qquad = \frac{G_{\rm k} + \psi_{\rm fi} Q_{\rm k,1}}{\gamma_{\rm G} G_{\rm k} + \gamma_{\rm Q,1} Q_{\rm k,1}}$		Expressi	on 2.5

Example 1 – Two storey office building	Sheet 9	of 25	Rev
ψ_{fi} is to be taken as $\psi_{1.1}$ according to the UK NA to EN 1991-1-2 The value of $\psi_{1.1}$ is taken from the UK NA to EN 1990, for (in this in office areas. $\psi_{\text{fi}} = \psi_{1,1} = 0.5$ $\eta_{\text{fi}} = \frac{5+0.5\times3.3}{1.35\times5+1.5\times3.3} = 0.57$ $M_{\text{fi,d}} = 0.57 \times 617 = 352 \text{ kNm}$ If the pair of expression 6.10a and 6.10b had been used to calculate the combination value of actions, the reduction factor is given by the small as determined from expression 2.5a and 2.5b of EN 1993-1-2. In this instance, expression 2.5b gives the lower value, which is 0.59. This worked example continues to use expression 6.10 of EN 1990 to the the design value of actions and expression 2.5 of EN 1991-1-2 to calculate reduction factor in the fire situation.	he design ller value calculate	UK NA t EN 1991- NA.2.7 UK NA t EN 1990 Table NA	-1-2 o
1.5 Design resistance of unprotected beam in fi For simplicity, the resistance of a structural section may be verified in temperature domain. Except when deformation criteria or when stability phenomena have to into account, the critical temperature ($\theta_{a,cr}$) of carbon structural steel to calculated as:	n the to be taken	EN 1993 4.2.4	-1-2
calculated as: $\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0.9674 \mu_0^{-3.833}} - 1 \right] + 482$ where the degree of utilisation, μ_0 , is given by: $\mu_0 = \frac{E_{\text{fi},d}}{R_{\text{fi},d,0}} \text{ but not less than 0.013}$ where: $E_{\text{fi},d}$ is the design effect of actions for the fire design situation (in the reduced bending moment), and $R_{\text{fi},d,0}$ is the corresponding design resistance at time $t = 0$ (i.e. the d bending resistance before any heating) Thus, when considering bending resistance: $\mu_0 = \frac{M_{\text{fi},d}}{M_{\text{fi},t,\text{Rd}}}$		EN 1993 4.2.4(2)	5-1-2

Example 1 – Two storey office building	Sheet 10	of 25	Rev
1.5.1 Section classification			
Although the beam is a Class 1 section at normal temperature, the at elevated temperature may differ, as according to clause 4.2.2 of $\varepsilon = 0.85 \sqrt{\frac{235}{f_y}}$			
Thus $\varepsilon = 0.85 \sqrt{\frac{235}{f_y}} = 0.85 \sqrt{\frac{235}{265}} = 0.8 \ (f_y = 265 \text{ N/mm}^2, \text{ since } 16 \text{ N/mm}^2)$	$< t_{\rm f} < 40)$		
For the web;			
c/t for a 533 × 210 × 122 UKB = 37.5		P363	
Class 1 limiting value = $72\varepsilon = 72 \times 0.8 = 57.6$		EN 1993	
Thus the web is Class 1		Table 5.2	2
For the flange;			
c/t for a 533 × 210 × 122 UKB = 4.08		P363	
Class 1 limiting value = $9\varepsilon = 9 \times 0.8 = 7.2$		EN 1993	
Thus the flange is Class 1		Table 5.	2
Therefore, even at elevated temperature, the beam is Class 1			
As the beam is a Class 1 section with a non-uniform temperature of $M_{\text{fi,t,Rd}}$, the design moment resistance at time <i>t</i> , may be determined		EN 1993 4.2.3.3 (
$M_{\rm fi,t,Rd} = \frac{M_{\rm fi,\theta,Rd}}{\kappa_1 \kappa_2}$			
in which:			
$M_{\rm fi,0,Rd}$ is the design moment resistance of the cross section for a temperature	uniform	EN 1993 4.2.3.3(1	
$= k_{\rm y,\theta} \left[\gamma_{\rm M0} / \gamma_{\rm Mfi} \right] M_{\rm Rd}$			
where:			
$k_{y,\theta}$ is the reduction factor for effective yield strength from Ta EN 1993-1-2	ble 3.1 of		
κ_1 is an adaption factor for non-uniform temperature across section	he cross-	EN 1993 4.2.3.3(3	
κ_2 is an adaption factor for non-uniform temperature along the	ne beam		
At time $t = 0$ (ambient temperature design): $\theta = 20^{\circ}$ C, $k_{y,\theta} = 1.00$		EN 1993 Table 3.	
The material partial factor at ambient temperature is:		UK NA	to
$\gamma_{M0} = 1.00$		EN 1993 NA.2.15	
The UK National Annex to EN 1993-1-2 suggests the use of the vapartial factors for materials at elevated temperature recommended EN 1993-1-2 clause 2.3. Therefore:		NA to EN 1993 NA.2.3	

Example 1 – Two storey office building	Sheet 1	1 of 25	Rev
The material partial factor at elevated temperature is: $\gamma_{M.fi} = 1.00$		EN 1993 2.3(2)	8-1-2
Hence:			
$M_{\rm fi,\theta,Rd} = 1.00 [1.00/1.00] \times 847 = 847 \mathrm{kNm}$			
For an unprotected beam supporting a concrete slab			
$\kappa_1 = 0.7$ (unprotected beam with concrete slab)		EN 1993 4.2.3.3 (
$\kappa_2 = 1.0$		1.2.3.3 ((0)
Therefore, at time $t = 0$			
$M_{\rm fi,t,Rd} = \frac{847}{0.7 \times 1.0} = 1210 \rm kNm$			
$ \mu_{\rm o} = \frac{M_{\rm fi,d}}{M_{\rm fi,t,Rd}} = \frac{352}{1210} = 0.29 $			
Therefore:			
$\theta_{\rm a,cr} = 39.19 \ln \left[\frac{1}{0.9674 \times 0.29^{3.833}} - 1 \right] + 482$			
$\theta_{\rm a,cr} = 669^{\rm o}{\rm C}$			
The time taken for the steel beam temperature to reach its critical valu calculated using an incremental process given in expression 4.25 of EN 1993-1-2	ie is	EN 1993 4.2.5.1	3-1-2
The increase in temperature of the steel beam during a time interval Δ given by:	<i>t</i> is		
$\Delta \theta_{\rm a,t} = k_{\rm sh} \frac{A_{\rm m}/V}{c_{\rm a}\rho_{\rm a}} \dot{h}_{\rm net} \Delta t$		Expressi	on 4.25
where: ρ_a is the density of steel = 7850 kg/m ³		EN 1993 3.2.2(1)	3-1-2
c_a is the specific heat of steel, given by EN 1991-1-2 Clause 3.	4.1.2		
$k_{\rm sh}$ is the correction factor for the shadow effect = $0.9[A_{\rm m}/V]_{\rm b}/[A_{\rm m}/V]$:		EN 1993 4.2.5.1	3-1-2
$k_{\rm sh}$ may conservatively be taken as 1 – see NOTE 2 of 4.2.5.1(2)			
The design value of net heat flux per unit area, \dot{h}_{netd} , is given by:			
$\dot{h}_{\text{net, d}} = \dot{h}_{\text{net, c}} + \dot{h}_{\text{net, r}}$		EN 1991	-1-2 3.1
The net radiative heat flux, $\dot{h}_{\text{net, r}}$, is given by:			
$\dot{h}_{\text{net, r}} = \Phi \varepsilon_{\text{m}} \varepsilon_{\text{f}} \sigma [(\theta_{\text{r}} + 273)^4 - (\theta_{\text{m}} + 273)^4]$			
The net convective heat flux, $\dot{h}_{\text{net,c}}$, is given by:			
$\dot{h}_{\rm net,c} = \alpha_{\rm c} \left(\theta_{\rm g} - \theta_{\rm m} \right)$			

Examp	ele 1 – Two storey office building	Sheet 12	of 25	Rev
where				
${\Phi}$	= 1.0 (EN 1991-1-2 clause 3.1(7)			
\mathcal{E}_{m}	= 0.7 (EN 1993-1-2 clause 2.2)			
\mathcal{E}_{f}	= 1.0 (EN 1993-1-2 clause 4.2.5.1(3)			
αc	is the coefficient of heat transfer by convection			
$ heta_{ m g}$	is the gas temperature in the vicinity of the fire exposed men below)	nber (see		
$\theta_{\rm m}$	is the surface temperature of the steel member			
σ	is the Stephan Boltzmann constant (= $5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$) (EN 1993-1-2 clause 3.1(6))			
The te	mperature-time curve is given by:			
$ heta_{ m g}$	$= 20 + 345 \log_{10} (8t + 1)$		EN 1991	-1-2
where	:		3.2.1(1)	
t	is time (in minutes)			
For the $[A_{\rm m}/V]$	e beam selected and the exposure considered (3-sided) the valu is:	e of		
$\left[\frac{A_{\rm m}}{V}\right]$	$= \frac{1890 - 211.9}{15.5} = 108 \text{ m}^{-1}$		EN 1993 4.2.5 & I	
	hat the above calculation assumes the use of precast concrete p protect the top surface of the beam.	olanks,		
As the	radiative heat flux $(\dot{h}_{net,c})$ is a function of the surface temperat	ure of the		
	$\theta_{\rm m}$), which is dependent on the gas temperature and time, a spin e used to calculate the steel temperature at intervals (Δt).	readsheet		
Accore 5 secor	ding to EN 1993-1-2 clause 4.2.5.1(4) Δt should not be taken as nds.	s more than		
	gn tool to undertake this verification is available at at a state of the state of t			
unprot	s conservatively taken as 1.0, the incremental calculation of the ected steel temperature shows that the beam reaches its critical rature of 669° C after 18.8 minutes.			
unprot	s calculated (the value is 0.698), the incremental calculation of ected steel temperature shows that the beam reaches its critical rature of 669° C after 22.7 minutes.			
	se the critical temperature is reached at 22.7 minutes, earlier that 30 minutes of fire resistance, an unprotected solution is unsa			
	1.6 shows the variation of the temperature of gas and steel tem me, showing when the critical temperature is reached.	perature		

1.6 Design resistance of protected beam in fire

Try encasing the beam with 10 mm fire protection board.

The temperature increase in a protected member in time interval Δt is given by:

$$\Delta \theta_{a,t} = \frac{\lambda_p A_p / V}{d_p c_a \rho_a} \frac{\left(\theta_{g,t} - \theta_{a,t}\right)}{1 + \phi/3} \Delta t - \left(e^{\frac{\phi}{10}} - 1\right) \Delta \theta_{g,t}$$
EN 1993-1-2
4.2.5.2
Expression 4.27

where:

$$\phi \qquad = \frac{c_{\rm p}\rho_{\rm p}}{c_{\rm a}\rho_{\rm a}}d_{\rm p}A_{\rm p}/V$$

where:

$\lambda_{ m p}$	is the thermal conductivity of the fire protection system	EN 1993-1-2
A_{p}	is the appropriate area of fire protection per unit length of the member	4.2.5.2
$d_{ m p}$	is the thickness of the fire protection material (in m)	
Ср	is the temperature independent specific heat of the fire protection material	
$ ho_{ m p}$	is the unit mass of the fire protection material	
$\theta_{\mathrm{g,t}}$	is the gas temperature at time t	
$\theta_{\mathrm{a,t}}$	is the steel temperature at time t	
$\Delta \theta_{\rm g,t}$	is the increase of the ambient gas temperature during the time interval Δt	
(other n	omenclature as previously defined)	

Example 1 – Two storey office building	Sheet 14	of 25	Rev
$\lambda_{\rm p}, c_{\rm p}, \text{ and } \rho_{\rm p}$ are taken from the manufacturer's data. For this fire protection board selected, the manufacturer provided the following data: Thermal conductivity $\lambda_{\rm p} = 0.2 \text{ W/mK}$ Thickness $d_{\rm p} = 10 \text{ mm}$			
Thickness $d_{\rm p}$ = 10 mmDensity $\rho_{\rm p}$ = 800 kg/m ³			
Specific heat $c_p = 1700 \text{ J/kgK}$			
$\frac{A_{\rm p}}{V} = \frac{\text{internal surface area of boarding}}{\text{volume of member}} = \frac{211.9 + 2 \times 544.5}{15.5} = 84$	m^{-1}	EN 1993 4.2.5.2(4	
For a protected beam supporting a concrete slab: $\kappa_1 = 0.85$		EN 1993	
$\kappa_2 = 1.0$		4.2.3.3 (/) & (8)
Therefore, at time $t = 0$			
$M_{\rm fi,t,Rd} = \frac{M_{\rm fi,\theta,Rd}}{\kappa_1 \kappa_2} = \frac{847}{0.85 \times 1.0} = 996 \text{ kNm}$			
$ \mu_{\rm o} = \frac{M_{\rm fi,d}}{M_{\rm fi,t,Rd}} = \frac{352}{996} = 0.35 $			
Therefore, the critical temperature of the protected beam is:			
$\theta_{a,cr,p} = 39.19 \ln \left[\frac{1}{0.9674 \times 0.35^{3.833}} - 1 \right] + 482$			
$\theta_{a,cr,p} = 639^{\circ}C$			
An incremental procedure must be used to determine the gas temperative time t and therefore the temperature of the steel. When undertaking the incremental process, Δt should not be taken as more than 30 seconds. I example, a spreadsheet has been used to calculate the gas and steel tem as they vary with time. Δt has been taken as 5 seconds.	e In this		

Figure 1.7 Variation of gas and steel temperatures with time – protected beam

The incremental calculation demonstrates that at the required fire resistance period of 30 minutes, the steel temperature is 350°C. This is less than the critical temperature of 639°C, and thus the protection selected is satisfactory. The salient points are highlighted in Figure 1.7.

Figure 1.7 illustrates that the selected solution would also be satisfactory for a fire resistance period of 60 minutes, as the steel temperature is 582°C, less than the critical temperature.

1.7 Fire resistance of a column (ground to first floor)

This section of the example demonstrates the verification of an internal column $(203 \times 203 \times 60 \text{ UKC } \text{S355})$ at the lower level, in accordance with the simplified calculation model described in EN 1993-1-2. The column is firstly considered unprotected, and then with the addition of board protection.

1.7.1 Verification at normal temperature

Note that according to the UK National Annex to EN 1990, the design combination value of actions could be calculated as the most onerous value from expression 6.10a and 6.10b. If the pair of expression 6.10a and 6.10b are considered, the reduction factor, calculated in Section 1.7.2 below is also modified.

Axial force due to permanent actions,	$G_{\rm k}$	= 327 kN
Axial force due to variable actions,	Q_k	= 219 kN

Example 1 – Two storey office building	Sheet 16	of 25	Rev
Design combination value of actions, using expression 6.10 from EN given by: $N_{\text{Ed}} = 1.35 \times 327 + 1.5 \times 219 = 770 \text{ kN}$	1990, is	EN 1990 Partial fa from Uk EN 1990	actors X NA to
The chosen column section, a $203 \times 203 \times 60$ UKC S355 is at least a	Class 2	P363)
Section at ambient temperature.	C1055 2	1000	
This may be verified by inspecting the "n limit" given on page D-204 The selected column section is at least Class 2 at all levels of axial low therefore the resistance is based on the gross area.			
Design resistance of the cross-section:			
$N_{\rm c,Rd}$ = $N_{\rm pl,Rd}$ = $Af_{\rm y}$ / $\gamma_{\rm M0}$		EN 1993	3-1-1
$= 2710 \text{ kN} > N_{\text{Ed}}$ therefore OK		6.2.4 P363	
Design buckling resistance of the cross-section:		EN 1993	-1-1
$N_{\rm b,Rd} = \chi A f_{\rm y} / \gamma_{\rm M1}$		6.3.1.1	
From sheets 4 and 7, the length of the bottom storey column is estima $4.2 + 0.5 - 0.15 - 0.05 - (0.5 \times 0.533) = 4.23$ m, so say 4.25 m. Assurbuckling length of $1.0 \times$ system length, the buckling resistance (interpret from P363) is 1350 kN	ning a	P363	
$N_{\rm b,Rd}$ = 1350 kN > $N_{\rm Ed}$ therefore OK			
1.7.2 Design loading at elevated temperature			
Design compression force at elevated temperature, $N_{\text{fi,Ed}}$ is given by:			
$N_{\rm fi,Ed} = \eta_{\rm fi} { m N}_{\rm Ed}$		EN 1993	3-1-2
The reduction factor for design load level in the fire situation is given	bv [.]	2.4.2(2) EN 1993	3-1-2
$\eta_{\rm fi} = \frac{G_{\rm k} + \psi_{\rm fi} Q_{\rm k,1}}{\gamma_{\rm G} G_{\rm k} + \gamma_{\rm Q,1} Q_{\rm k,1}}$		2.4.2(3) Express	
ψ_{fi} is to be taken as $\psi_{1,1}$ according to the UK NA to EN 1991-1-2		UK NA t	
The value of $\psi_{1,1}$ is taken from the UK NA to EN 1990, for (in this in office areas.	stance),	EN 1991 NA.2.7 UK NA 1	0
$\psi_{\rm fi} \qquad = \psi_{1,1} = 0.5$		EN 1990 Table NA	
$ \eta_{\rm fi} = \frac{327 + 0.5 \times 219}{1.35 \times 327 + 1.5 \times 219} = 0.57 $			
Hence:			
$N_{\rm fi,Ed}$ = 0.57 × $N_{\rm Ed}$ = 0.57 × 770 = 437 kN			
1.8 Design buckling resistance of unprotected of at elevated temperature	column		
The design buckling resistance in fire is given by:		EN 1993	
$N_{\rm b, fi, t, Rd} = \chi_{\rm fi} A k_{\rm y, \theta} f_{\rm y} / \gamma_{\rm Mfi}$		4.2.3.2(1	1)

Example 1 – Two storey office building	Sheet 17	of 25	Rev
The UK National Annex to EN 1993-1-2 suggests the use of the valu factors for materials at elevated temperature recommended in EN 199 clause 2.3. Therefore:	-	NA to EN 1993 NA.2.3	8-1-2
$\gamma_{Mfi} = 1.0$		EN 1993	8-1-2
$f_y = 355 \text{ N/mm}^2$		2.3(2)	
$k_{y,\theta}$ is the reduction factor for effective yield strength from Table EN 1993-1-2	e 3.1 of	EN 1993 Table 3.	
The area to be used in the preceding calculation depends on the section classification, which may vary at elevated temperature.	on		
1.8.1 Section classification			
Although the column is at least Class 2 at normal temperature, the cla at elevated temperature may differ, as according to clause 4.2.2 of EN $\varepsilon = 0.85 \sqrt{\frac{235}{f_y}}$			
Thus $\varepsilon = 0.85 \sqrt{\frac{235}{f_y}} = 0.85 \sqrt{\frac{235}{355}} = 0.69$ ($f_y = 355$ N/mm ² , since $t_f <$	16)		
For the web;		D2(2	
c/t for a 203 × 203 × 60 UKC = 17.1		P363	
Class 1 limiting value = $33\varepsilon = 33 \times 0.69 = 22.7$		EN 1993 Table 5.1	
Thus the web is Class 1			2
For the flange;		P363	
c/t for a 203 × 203 × 60 UKC = 6.2		1 505	
Class 1 limiting value = $9\varepsilon = 9 \times 0.69 = 6.21$ Thus the flange is Class 2		EN 1993 Table 5.	
Therefore, at elevated temperature, the column is Class 2.			
For a Class 2 section, the gross area is used in design.			
$A = 7640 \text{ mm}^2$		P363	
1.8.2 Column slenderness			
For intermediate storeys of a braced frame with separate fire compart buckling length may be taken as $l_{fi} = 0.5L$. Therefore:	ments, the	EN 1993 4.2.3.2(5	
Buckling length, $L_{cr} = L_{fi} = 0.5 \times 4250 = 2125 \text{ mm}$			
The non-dimensional slenderness (at ambient temperature) $\overline{\lambda} = \frac{L_{\rm cr}}{i} \frac{1}{\lambda_{\rm l}}$		EN 1993 6.3.1.3	8-1-1
$i \lambda_1$			

Example 1 – Two storey office building	Sheet 18	of 25	Rev
where:			
$\lambda_1 = 93.9\varepsilon = 93.9\sqrt{235/355} = 76.4$			
For this UKC section, the radius of gyration is $i_z = 52 \text{ mm}$		P363	
$\overline{\lambda} = \frac{2125}{52} \times \frac{1}{76.4} = 0.535$			
The non-dimensional slenderness at an elevated steel temperature, $\overline{\lambda_{\theta}}$	is	EN 1993 4.2.3.2(2	
given by:		4.2.3.2(2	.)
$\overline{\lambda}_{\theta} = \overline{\lambda} \left[k_{\mathrm{y},\theta} / k_{\mathrm{E},\theta} \right]^{0.5}$			
Reduction factor χ_{fi}			
The reduction factor for buckling at elevated temperature, χ_{fi} , is given	by:		
$\chi_{\rm fi} = \min(\chi_{\rm y,fi}, \chi_{\rm z,fi})$			
For this section, with the same buckling length and restraint condition axis, it is clear by inspection that buckling in the minor axis will be cr only this axis needs to be considered. To determine the reduction factor	itical and	EN 1993 4.2.3.2	-1-2
1. The non-dimensional slenderness $\overline{\lambda}$ is calculated (at ambient temp	perature).		
2. The reduction factors $k_{y,\theta}$ and $k_{E,\theta}$ are determined from Table 3.1 EN 1993-1-2.	of		
3. The non-dimensional slenderness at elevated temperature is calculated $\overline{\lambda}_{z,\theta} = \overline{\lambda}_{z} \left[k_{y,\theta} / k_{E,\theta} \right]^{0.5}$	ated:		
4. ϕ_{θ} is calculated, given by:			
$\phi_{\theta} = \frac{1}{2} \left[1 + \alpha \overline{\lambda}_{\theta} + \overline{\lambda}_{\theta}^2 \right]$ where $\alpha = 0.65 \sqrt{235' f_y}$			
5. The reduction factor $\chi_{\rm fi}$ is calculated, given by:			
$\chi_{\mathrm{fi}} = rac{1}{\phi_{\mathrm{ heta}} + \sqrt{\phi_{\mathrm{ heta}}^2 - \overline{\lambda}_{\mathrm{ heta}}^2}}$			
Because $\overline{\lambda}_{z,\theta}$ and therefore χ_{fi} are temperature dependant, an increment	ntal process		
is required to calculate the design resistance at each temperature. The failure is determined as the time when the design resistance falls below design effect (which in this example is 437 kN)			
1.8.3 Steel temperature			
The change in steel temperature in time interval Δt is given by:			
$\Delta \theta_{\rm a,t} = k_{\rm sh} \frac{A_{\rm m}/V}{c_a \rho_a} \dot{h}_{\rm net} \Delta t$		EN 1993 4.2.5.1	-1-2
(nomenclature as previously defined)			
For an unprotected member, the reduction factors for the materials are for the beam design.	as defined		
For the selected column $203 \times 203 \times 60$ UKC, exposed on four sides,			

$\frac{d_m}{V} = \frac{1210}{7.64} = 158.4 \text{ m}^{-1}$ $\frac{\left[\frac{d_m}{V}\right]_{\bullet}}{1}$ is the box value of the section factor (the value for a rectangular box that surrounds the profile). $\left[\frac{d_m}{V}\right]_{\bullet} = \frac{(2b+2h)}{A} = \frac{\left[2 \times 205.8 + 2 \times 209.6\right)}{7.64} = 108.7 \text{ m}^{-1}$ is a $= 0.9 \left[\frac{d_m}{V}\right]_{\bullet} \left[\frac{d_m}{A}\right]_{\bullet} = \frac{(2 \times 205.8 + 2 \times 209.6)}{7.64} = 108.7 \text{ m}^{-1}$ is a $= 0.9 \left[\frac{d_m}{A}\right]_{\bullet} \left[\frac{d_m}{A}\right]_{\bullet} = \frac{108.7 \text{ m}^{-1}}{1.23}$ is a surround the profile. $\frac{13.4 \text{ Design buckling resistance of an unprotected column at elevated temperature}}{1200 \text{ any buckling resistance of an unprotected column at the elevated temperature}} = 1.8 \text{ shows the results of the process. The design arcsistance (plotted on the sign has his is less than the required fire resistance period, (30 minutes), 1.6 unprotected column resistance at alb below the design arcsistance is limited to 1350 kN, the design esistance at ambient temperature. \frac{1200}{0} \frac{1200}{0$		Sheet 19	of 25	Rev
that surrounds the profile). $\frac{d_m}{V}\Big _{b} = \frac{(2b+2h)}{A} = \frac{(2 \times 205.8 + 2 \times 209.6)}{7.64} = 108.7 \text{ m}^{-1}$ sh = 0.9[Am/V]b/[Am/V] = 0.9 × 108.7/158.4 = 0.62 8.4 Design buckling resistance of an unprotected column at elevated temperature . spreadsheet may be used to calculate the gas temperature, the steel emperature and therefore the design resistance at elevated temperature. is is less that the required fire resistance period, (30 minutes), the unprotected dolution is unsatisfactory. The critical temperature when the column resistance at ambient temperature. Note that in Figure 1.8, the design resistance is limited to 1350 kN, the design esistance at ambient temperature. 1200 12	$\frac{4_{\rm m}}{V} = \frac{1210}{7.64} = 158.4 \ {\rm m}^{-1}$		P363	
$\frac{d_m}{V}\Big]_{b} = \frac{(2b+2h)}{A} = \frac{(2 \times 205.8 + 2 \times 209.6)}{7.64} = 108.7 \text{ m}^{-1}$ ah = 0.9[<i>A</i> m/ <i>V</i>]b/[<i>A</i> m/ <i>V</i>] = 0.9 × 108.7/158.4 = 0.62 8.4 Design buckling resistance of an unprotected column at elevated temperature . as preadsheet may be used to calculate the gas temperature, the steel more rature and therefore the design action (437 kN) at a time of 21.1 minutes. As it is less than the required fire resistance priod, (30 minutes), the unprotected obtain is 091°C. Note that in Figure 1.8, the design resistance is limited to 1350 kN, the design action is 691°C. Note that in Figure 1.8, the design resistance is limited to 1350 kN, the design action is 691°C. Note that in Figure 1.8, the design design action (437 kN) at a time of 21.0 minutes. As is is lest temperature. Design resistance at ambient temperature. How the design action is 691°C. Note that in Figure 1.8, the design resistance is limited to 1350 kN, the design design action (400 design desi	$\left[\frac{A_{\rm m}}{V}\right]_{\rm b}$ is the box value of the section factor (the value for a rectang	gular box		
$h = 0.9[A_m/V]_b/[A_m/V] = 0.9 \times 108.7/158.4 = 0.62$ 8.4 Design buckling resistance of an unprotected column at elevated temperature as spreadsheet may be used to calculate the gas temperature, the steel emperature and therefore the design resistance at elevated temperature. Igure 1.8 shows the results of the process. The design resistance (plotted on the ght hand axis) falls to the design action (437 KN) at a time of 21.1 minutes. As its its less than the required fire resistance period, (30 minutes), the unprotected olution is unsatisfactory. The critical temperature when the column resistance at ambient temperature. Stote that in Figure 1.8, the design resistance is limited to 1350 kN, the design esistance at ambient temperature. 1200				
4.2.5.1(2) = $0.9 \times 108.7/158.4 = 0.62$ 8.4 Design buckling resistance of an unprotected column at elevated temperature as preadsheet may be used to calculate the gas temperature, the steel emperature and therefore the design resistance at elevated temperature. igure 1.8 shows the results of the process. The design resistance (plotted on the ght hand axis) falls to the design action (437 kN) at a time of 21.1 minutes. As this is less than the required fire resistance period, (30 minutes), the unprotected oblition is unsatisfactory. The critical temperature when the column resistance at albelow the design action is 691°C. Note that in Figure 1.8, the design resistance is limited to 1350 kN, the design resistance at ambient temperature. $1200^{-1000} - \frac{6}{000} - \frac{6}{000} - \frac{6}{200} - \frac{6}$	$\left[\frac{A_{\rm m}}{V}\right]_{\rm b} = \frac{(2b+2h)}{A} = \frac{(2\times205.8+2\times209.6)}{7.64} = 108.7 {\rm m}^{-1}$			
8.4 Design buckling resistance of an unprotected column at elevated temperature and therefore the design resistance at elevated temperature, the steel symperature and therefore the design resistance at elevated temperature. Igure 1.8 shows the results of the process. The design resistance (plotted on the ght hand axis) falls to the design action (437 kN) at a time of 21.1 minutes. As its is less than the required fire resistance period, (30 minutes), the unprotected olution is unsatisfactory. The critical temperature when the column resistance at ambient temperature. 1000 100	sh $= 0.9[A_{\rm m}/V]_{\rm b}/[A_{\rm m}/V]$			
elevated temperature spreadsheet may be used to calculate the gas temperature, the steel imperature and therefore the design resistance at elevated temperature. igure 1.8 shows the results of the process. The design resistance (plotted on the ght hand axis) falls to the design action (437 kN) at a time of 21.1 minutes. As is is less than the required fire resistance period, (30 minutes), the unprotected obtain is unsatisfactory. The critical temperature when the column resistance alls below the design action is 691°C. to the that in Figure 1.8, the design resistance is limited to 1350 kN, the design esistance at ambient temperature. 1200 100	$= 0.9 \times 108.7/158.4 = 0.62$		4.2.5.1(2	2)
emperature and therefore the design resistance at elevated temperature. igure 1.8 shows the results of the process. The design resistance (plotted on the ght hand axis) falls to the design action (437 kN) at a time of 21.1 minutes. As is is less than the required fire resistance period, (30 minutes), the unprotected oblution is unsatisfactory. The critical temperature when the column resistance ills below the design action is 691°C. Note that in Figure 1.8, the design resistance is limited to 1350 kN, the design esistance at ambient temperature. 1200 1000		mn at		
1200 1000	igure 1.8 shows the results of the process. The design resistance (pl ght hand axis) falls to the design action (437 kN) at a time of 21.1 mis is less than the required fire resistance period, (30 minutes), the plution is unsatisfactory. The critical temperature when the column alls below the design action is 691°C.	otted on the ninutes. As unprotected resistance		
00 50 50 50 50 50 50 50 50 50 50 50 50 5	sistance at ambient temperature.			
Gas temperature Steel temperature Point of failure Point of failure Fire load (kN) Fire load (kN) 	1200		 :	1600
Solution of the second				
200 0 0 0 0 10 20 30 40 50 60 70 80 90 100 Minutes				
200 0 0 0 0 10 20 30 40 50 60 70 80 90 100 Minutes	1000	Gas temperature		1400
200 0 0 0 10 20 30 40 50 60 70 80 90 100 Minutes	1000		:	1400 1200
200 0 0 0 10 20 30 40 50 60 70 80 90 100 Minutes	1000	Steel temperature Point of failure		1400 1200
200 0 0 0 10 20 30 40 50 60 70 80 90 100 Minutes	1000	Steel temperature Point of failure Critical temperatur	re	1400 1200
200 0 0 0 10 20 30 40 50 60 70 80 90 100 Minutes	1000	Steel temperature Point of failure Critical temperatur Design resistance (re	1400 1200
0 10 20 30 40 50 60 70 80 90 100 Minutes	1000	Steel temperature Point of failure Critical temperatur Design resistance (- 2 re kN)	1400 1200
0 10 20 30 40 50 60 70 80 90 100 Minutes	1000 1000 400 400 400	Steel temperature Point of failure Critical temperatur Design resistance (- 2 re kN)	1400 1200 1000 (kN) Design resistance (kN)
igure 1.8 Variation of gas temperature, steel temperature and design resistance with time	1000 1000 800 400 200 200	Steel temperature Point of failure Critical temperatur Design resistance (re kN) - 2 - 2 - 2 - 2 - 2 - 2	1400 1200 1000 (N) 300 500 Gesign resistance 400 200
 unprotected column 	1000 1000	Steel temperature Point of failure Critical temperatur Design resistance (Fire load (kN)	re kN) - 2 - 2 - 2 - 2 - 2 - 2	1400 1200 1000 (N) 300 500 Gesign resistance 400 200

Example 1 – Two storey office building	Sheet 20	of 25	Rev
An identical calculation process demonstrates that an unprotected $203 \times 203 \times 86$ UKC in S355 would be satisfactory (time to failure of 32.9 minutes), if an unprotected solution was required.			
1.9 Design resistance of protected column at elevated temperature			
Try encasing the column with 10 mm of fire protection board.			
The temperature increase in a protected member in time interval Δt is	given by:		
$\Delta \theta_{a,t} = \frac{\lambda_p A_p / V}{d_p c_a \rho_a} \frac{\left(\theta_{g,t} - \theta_{a,t}\right)}{\left(1 + \phi / 3\right)} \Delta t - \left(e^{\phi_{10}} - 1\right) \Delta \theta_{g,t}$		EN 1993 4.2.5.2 Expressi	
where:		-	
$\phi = \frac{c_{\rm p}\rho_{\rm p}}{c_{\rm a}\rho_{\rm a}} d_{\rm p} A_{\rm p}/V$			
(all nomenclature as previously defined)			
$\lambda_{\rm p}, c_{\rm p}$, and $\rho_{\rm p}$ are taken from the manufacturer's data.			
For this fire protection board selected, the manufacturer provided the f data:	following		
Thermal conductivity $\lambda_p = 0.2 \text{ W/mK}$			
Thickness $d_{\rm p} = 10 {\rm mm}$			
Density $\rho_p = 800 \text{ kg/m}^3$			
Specific heat $c_p = 1700 \text{ J/kgK}$			
$A_{\rm p}/V = \frac{\text{Internal surface area of boarding}}{\text{volume of member}}$			
In this instance, A_p/V is equal to the box value of the section factor = 1	$08.7 \text{ m}^{-1}.$		
An incremental procedure must be followed to determine the gas temp time t and therefore the temperature of the protected steelwork. Once t temperature is calculated, the resistance calculations follow the same p described for the unprotected column.	the steel		
The incremental calculation procedure demonstrates that at the require resistance period of 30 minutes, the resistance of the column has not b reduced. The resistance of the column is 1350 kN. The steel temperatur minutes in 404°C, less than the critical temperature of 691°C. As show Figure 1.9, the resistance of the protected column only reduces after 42 Note in Figure 1.9, the resistance has been limited to 1350 kN, the des resistance at ambient temperature.	een ure at 30 vn in 2 minutes.		
Thus the selected solution is satisfactory.			

Figure 1.9 Variation of gas temperature, steel temperature and design resistance with time – protected column

1.10 Fire resistance of end-plate beam to column connection

The resistance of the connection at elevated temperature is based on the resistance of the components (the bolts, welds and steel elements) and is compared to a reduced design value of actions (in this case the shear force). The resistance of the connection components at elevated temperature is taken as the resistance at ambient temperature, multiplied by a reduction factor. The resistance of components at ambient temperature follows the guidance in P363. The calculation of the resistance of the key connection components at ambient temperature is demonstrated in Section 1.10.2 and the resistance at elevated temperature in Sections 1.10.4 to 1.10.6.

1.10.1 Arrangement of connection

Figure 1.10 shows the partial depth end plate beam to column connection at the first floor level.

The connection is a 'standardised' detail, taken from the 'Green Book' of simple P358 joints, P358.

The connection details are given on page T-11 of P358. There are 6 rows of M20, 8.8 bolts at 70 mm vertical pitch. The end plate is $430 \times 200 \times 12$ in S275 material. 8 mm fillet welds are provided to the beam web.

Example 1 – Two storey office building	Sheet 22	of 25	Rev
From page T-11, the vertical shear resistance is given as 752 kN, and the check is identified as check 4. Check 4 covers the resistance of the beat shear.			
Figure 1.10 The beam to column connection detail at the first floor 1.10.2 Connection resistance at ambient temperature			
Bolt group	04.1.1.1.1	Daga	
From page C-381 of P363, the shear resistance of an M20, 8.8 bolt, is In P358, check 8, this resistance is factored by 0.8, to allow for the ine tension that the bolts experience, even in a nominally pinned joint.		P363	
Thus the design shear resistance per bolt is $0.8 \times 94.1 = 75.3$ kN			
Because the column flange is 14.2 mm in S355, and the end plate is 12 S275, bearing in the end plate will be critical.	2 mm in	P363	
The bolt group has the following geometry:			
Edge distance, $e_2 = 30 \text{ mm}$			
End distance, $e_1 = 40 \text{ mm}$			
Pitch, $p_1 = 70 \text{ mm}$			
Gauge, $p_2 = 140 \text{ mm}$			
As all the above dimensions are the same or larger than those in the m on page C-381 of P363, the bearing resistance in 12 mm, S275 plate w least 101 kN.		P363	
Thus, bolt shear is critical. The resistance of the bolt group is therefore $12 \times 75.3 = 903.6$ kN	2		

Example 1 – Two storey office building	Sheet 23	of 25	Rev
Beam web			
In P358, check 4, the resistance of the beam web, $V_{pl,Rd}$ is given by:			
$V_{\rm pl,Rd} = A_{\rm v} \frac{f_{\rm y,b1}/\sqrt{3}}{\gamma_{\rm M0}}$			
$f_{y,b1} = 265 \text{ N/mm}^2$, as $16 < t_f < 40$ $A_v = 0.9 \times 430 \times 12.7 = 4915 \text{ mm}^2$			
$V_{\rm pl,Rd} = 4915 \times \frac{265/\sqrt{3}}{1.0} \times 10^{-3} = 752 \text{ kN} \text{ (as T-11, P358)}$			
1.10.3 Connection resistance at elevated temperature			
Although Annex D of EN 1993-1-2 covers the resistance of joints at ele temperature, this Annex should not be used, according to the UK Natio Annex. Non-contradictory information (NCCI) to replace Annex D ma found at <u>www.steel-ncci.co.uk</u> , where resource SN004a-GB covers the of bolts and welds in fire situations.	onal ay be	UK NA ⁺ EN 1993 NA.3.2	
When calculating the connection resistance, the bolts, welds and steel (end plate, beam web etc.) should be verified, against a reduced design			
The reduction factor for design load level in the fire situation is given	by:	EN 1993	-1-2
$\eta_{\rm fi} \qquad = \frac{G_{\rm k} + \psi_{\rm fi} Q_{\rm k,1}}{\gamma_{\rm G} G_{\rm k} + \gamma_{\rm Q,1} Q_{\rm k,1}}$		2.4.2(2) Expressi	on 2.5
Note that the use of expression 2.5 is associated with the use of express from EN 1990. If expressions 6.10a and 6.10b from EN 1990 had been calculation of $\eta_{\rm fi}$ should be taken as the smaller value from expression 2.5b from EN 1993-1-2.	used, the		
ψ_{fi} is to be taken as $\psi_{1.1}$ according to the UK NA to EN 1991-1-2		UK NA ta EN 1991-	
The value of $\psi_{1,1}$ is taken from the UK NA to EN 1990, for (in this insoffice areas.	tance),	NA.2.7 UK NA ta	
$\psi_{\rm fi} \qquad = \psi_{1,1} = 0.5$		EN 1990 Table NA	.A1.1
$ \eta_{\rm fi} = \frac{5 + 0.5 \times 3.3}{1.35 \times 5 + 1.5 \times 3.3} = 0.57 $			
The reduced design shear force is therefore:			
$V_{\rm fi,d} = 0.57 \times \frac{f_{\rm d}L}{2} = \frac{(11.7 \times 7.5)7.5}{2} = 188 \text{ kN}$			
Temperatures in the connection			
The temperature of any part of the joint may be conservatively assume equal to the bottom flange temperature at mid span of the connected be As calculated on sheet 15, the bottom flange of the protected steel bear reach a temperature of 350°C at the required time of 30 minutes. Thus $\theta_0 = 350^{\circ}$ C.	eam. m will	PN004a-0 Clause 5 EN 1993 6.2.6.1	

Example 1 – Two storey office building	Sheet 24	of 25	Rev
1.10.4 Design resistance of bolts in shear and bearing (elevated temperature)	at		
At elevated temperature, the design resistance of bolts in shear $F_{v,t}$	Rd is given by:		
$F_{\rm v,t,Rd} = F_{\rm v,Rd} k_{\rm b,\theta} \frac{\gamma_{\rm M2}}{\gamma_{\rm M,fi}}$		PN004a- 3.1.1	GB
At elevated temperature, the design resistance of bolts in bearing <i>F</i> given by:	b,t,Rd is		
$F_{b,t,Rd} = F_{b,Rd} k_{b,\theta} \frac{\gamma_{M2}}{\gamma_{M,fi}}$			
where:			
γ_{M2} is the partial factor at normal temperature			
$\gamma_{M,fi}$ is the partial factor for fire conditions			
For bolts in shear and for bolts in bearing, $\gamma_{M2} = 1.25$		UK NA EN 1993	
The UK National Annex to EN 1993-1-2 suggests the use of the variation for materials at elevated temperature recommended in EN 1 clause 2.3. Therefore:	-		
The material partial factor at elevated temperature is:		EN 1993	3-1-2
$\gamma_{\text{M.fi}} = 1.00$		2.3(2)	
At 350°C, the reduction factor for bolts, $k_{b,\theta} = 0.839$		PN004a- Table 3.1	-
At normal temperatures, the bolt shear resistance was critical (see swill remain so at elevated temperature as both the shear resistance			
bearing resistance are multiplied by the same factor, $k_{b,\theta} \frac{\gamma_{M2}}{\gamma_{M,fi}}$.			
design resistance of bolts in shear $F_{v,t,Rd}$ is therefore:			
$F_{\rm v,t,Rd} = F_{\rm v,Rd} k_{\rm b,\theta} \frac{\gamma_{\rm M2}}{\gamma_{\rm M,fi}} = (0.8 \times 94.1) \times 0.839 \times 1.25/1.0 = 79.0$	0 kN		
The resistance of the bolt group is therefore:			
$12 \times 79.0 = 948$ kN, > 188 kN, satisfactory.			
1.10.5 Design resistance of beam web (at elevated temp	perature)		
Table 3.1 of EN 1993-1-2 provides reduction factors for yield stren	ngth.		
Assuming all the connection components are at the temperature of flange (350°C), the reduction factor $k_{y,\theta} = 1.0$.	the bottom	EN 1993 Table 3.1	
Therefore, there is no reduction to the resistance of the beam web a temperature.	at elevated		
Therefore, the resistance of the connection at elevated temperature satisfactory.	is		

Example 1 – Two storey office building	Sheet 25	of 25	Rev
<i>Note that this also applies to the resistance of the end plate – no reduce required.</i>	ction is		
More generally, at temperatures greater than 400°C, Table 3.1 indicates reduction factor $k_{y,\theta}$ less than 1.0. The verification of connection compounds the end plate and beam web should follow the checks described using a material strength reduced by the factor $k_{y,\theta}$.	ponents		
1.10.6 Design resistance of welds (at elevated temperature	e)		
At elevated temperature, the design resistance of fillet welds $F_{w,t,Rd}$ is	given by:		
$F_{\rm w,t,Rd} = F_{\rm w,Rd} k_{\rm b,0} \frac{\gamma_{\rm M2}}{\gamma_{\rm M,fi}}$		PN004a-0 4.2	GB
For design at ambient temperature, a 'full strength' weld has been pro Even allowing for some coexisting nominal moment, the vertical shea at ambient temperature is significantly in excess of the applied shear.			
Vertical resistance (in the absence of any coexisting moment)			
$= (430 - 2 \times 8) \times 2 \times 1.25 = 1035 \text{ kN}$			
At 350°C, the reduction factor for welds, $k_{w,\theta} = 0.938$		PN004a- Table 3.1	GB
Thus the resistance to vertical shear alone is $0.938 \times 1035 = 971$ kN			
Although no coexisting moment has been allowed for, this resistance greater than the design shear force of 188 kN, and therefore satisfacto			
In general, the advice of Advisory Desk AD370 should be followed, to a required weld size at ambient temperature (which may be less than provided). At elevated temperature, the reduced weld resistance should compared to the reduced shear load. The reduced shear load may be by a factor of 1.27 to allow for the coexisting moment (see AD370).	that ld be		