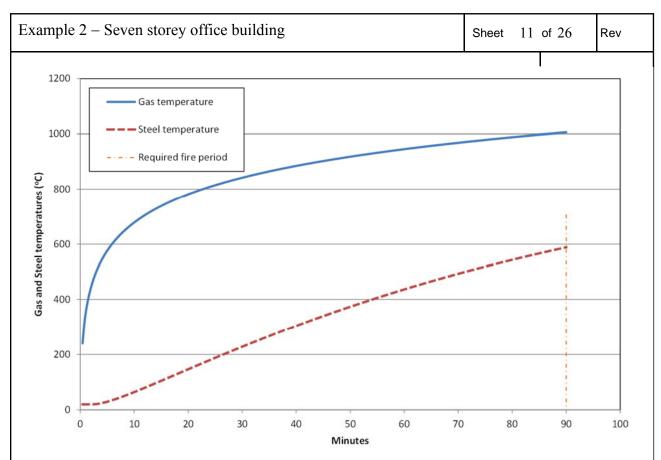
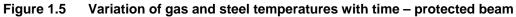

	Job No.	BCF 196		Sheet	1	of	26	Rev
Sci	Title	Fire Resistance design	l					
Steel Knowledge Silwood Park, Ascot, Berks SL5 7QN	Subject	Example 2 – Seven-sto	orey offi	ice bui	ldin	ıg		
Telephone: (01344) 636525 Fax: (01344) 636570	Client		Made by	y Sl	BM	Dat	e Se	ep 2013
CALCULATION SHEET	Client		Checke	d by D	GB	Dat	e N	ov 2013
1 SEVEN-STORE	Y OFI		6					
1.1 Arrangement and	l loadi	ng						
The arrangement of the steel fram in Figure 1.1 and Figure 1.2. Det arrangement are shown in Figure	tails of th	e typical floor plan and			own	l		
The steelwork has been designed values of partial factors given by summarised in Table 1.2.				-	e			
The beam and column sizes shown in the Figures were determined by considering the structure as a braced frame with composite floors. The initial design was carried out at ambient temperature.								
Table 1.1 Characteristic action	s for des	ign						
Actions on first floor								
Permanent Actions:								
Concrete slab		2.78 kN/m ²						
Self-weight of decking		0.13 kN/m ²						
Allowance for self-weight of beams		0.6 kN/m ²						
Ceiling & Services		0.9 kN/m ²						
Variable Actions:								
Occupancy Load		2.5 kN/m ²						
Partitions		0.8 kN/m ²						
Actions on roof								
Permanent Actions								
Concrete slab		2.78 kN/m ²						
Self-weight of decking		0.13 kN/m ²						
Allowance for self-weight of beams		0.30 kN/m ²						
Ceiling & Services		0.90 kN/m ²						
Variable Actions								
Imposed load		0.6 kN/m ²						
Table 1.2 Partial factors on action	ions							
Factor Value								
γ _G 1.35								
γα 1.50								

Example 2 – Seven storey office building	Sheet	2 of 26	Rev
This worked example demonstrates the verification at elevated tempe two composite beams (primary and secondary) and a column.	rature of		
Two verifications of the column are demonstrated:			
• Unprotected.			
• Protected with board.			
The verifications follow a simplified calculation model, as permitted $4.1(2)$ of EN 1993-1-2.	by clause		
The verifications use the standard temperature-time curve given in El clause $3.2.1(1)$.	N 1991-1-	-2	
EN 1994-1-2 covers the structural fire design of composite members requires that composite beams are verified for:Resistance of critical cross-sectionsVertical shear	and	EN 199 4.3.4.1	
Resistance to longitudinal shear			
The verification process for the protected composite beam may be summarised as:			
• Under fire conditions, a reduced design value of actions is calcula	ted.		
• Determine the temperature of the protected steel beam at the reprotection period	equired fi	ire	
• Determine reduction factors for the strength of components (stee shear studs) at the calculated temperature	el, concret	te,	
• Verify the resistance of the member, based on the (reduced) design of the components.	n resistanc	es	
The verification process for the column is described in the accompany example covering a two storey office.	ying		




Example 2 – Seven storey office building	Sheet 7	of 26	Rev
1.2 Structural fire design	I		1
The structure is an office building, without sprinklers. The floor height top storey is 22.53 m above ground level. According to Table A2 of . Document B, a 90 minute minimum period of fire resistance is require	Approved	App. Do	с. В
1.3 Fire resistance of a primary floor beam (grid with fire protection	lline B)		
1.3.1 Composite beam details			
Beam size: $356 \times 171 \times 57$ UKB, S275			
Beam spacing: 9.0 m			
Beam span: 6.0 m	1		
The beam has been designed at ambient temperature. The slab is 130 using <i>ComFlor</i> $51 + \text{deck}$ and normal weight 25/30 concrete. The she are 19 mm diameter, 95 mm long.	1,		
From the manufacturer's data, the weight of concrete is 2.78 kN/m^2 a weight of the deck is 0.13 kN/m^2 .	nd the		
1.3.2 Design effects of actions in fire		EN 1993	-1-2
The effects of actions in fire may be determined from EN 1990. In ex	-	2.4.2	
6.11b of EN 1990, the combination factor ψ to be used with the leading action is given in EN 1991-1-2.	ng variable	UK NA EN 1991	
The UK National Annex to EN 1991-1-2 specifies that the combination ψ_1 should be used.	on factor	LIN 1991	-1-2
UK National Annex to EN 1990 defines $\psi_1 = 0.5$ for (in this instance loading.) office	UK NA EN 1990 NA.2.2.2)
As there is no accompanying variable action, the design value of action	ons under	INA.2.2.2	2
fire conditions is given by:		EN1990	on
$G_{k}+\psi_{1}Q_{k}$		Expressi 6.11(b)	011
Characteristic value of the permanent actions:			
$G_{\rm k}$ = 2.78 + 0.13 + 0.6 + 0.90 = 4.41 kN/m ²			
Characteristic value of the variable actions:			
$Q_{k,1} = 2.5 + 0.8 = 3.3 \text{ kN/m}^2$			
The design value of actions under fire conditions is therefore			
$G_{\rm k} + \psi_1 Q_{\rm k} = 4.41 + 0.5 \times 3.3 = 6.1 \rm kN/m^2$			
As an alternative to using expression 6.11b or EN 1990, the effects of under fire conditions, $E_{d,fi}$ may be determined from: $E_{d,fi} = \eta_{fi} E_{d}$	actions	EN 1991 2.4.2(2)	-1-2
where:			
$\eta_{\rm fi}$ is a reduction factor, given in EN 1993-1-2			
$E_{\rm d}$ is the design value of the corresponding force or moment for temperature design.	normal		

Example 2 – Seven storey office building	Sheet 8	of 26	Rev
The expression for $\eta_{\rm fi}$ depends on which expression in EN 1990 has b to calculate the design value of the combination of actions. In this exa expression 6.10 will be used, and therefore expression 2.5 of EN 1993 be used to calculate $\eta_{\rm fi}$.	mple,		
According to expression 6.10, the design value of the combination of given by:	actions is	EN 1990 Expressi	
$E_{\rm d}$ = 1.35 × 4.41 + 1.5 × 3.3 = 10.9 kN/m ²			
and $\eta_{\text{fi}} = \frac{G_{\text{k}} + \psi_{\text{fi}}Q_{\text{k},1}}{\gamma_{\text{G}}G_{\text{k}} + \gamma_{\text{Q},1}Q_{\text{k},1}} = \frac{4.41 + 0.5 \times 3.3}{1.35 \times 4.41 + 1.5 \times 3.3} = 0.556$		EN 1993 2.4.2(2) Expressi	
Thus the design effects in fire are given by:			
$E_{\rm d,fi}$ = $\eta_{\rm fi} E_{\rm d} = 0.556 \times 10.9 = 6.1 \text{ kN/m}$			
In this instance, the two alternative approaches to determine the design fire produce the same result.	gn load in		
The design value of the point load applied by the secondary beams at span of the primary beam is given by:	the mid		
$6.1 \times 3 \times 9 = 164.7 \text{ kN}$			
Design bending moment at mid span of the primary beam:			
$M_{\rm Ed} = 164.7 \times 6/4 = 247.1 \ \rm kNm$			
Design shear force at the support:			
$V_{\rm Ed} = 164.7 / 2 = 82.4 \rm kN$			
1.3.3 Critical temperature of the protected beam			
The critical temperature for the beam may be calculated and a protect system chosen to ensure that the steel remains below this temperature approach is simple and conservative. This example demonstrates the of the critical temperature, but then continues to determine the actual temperature of the beam with a specific protection system and to calcu- resistance of the beam at that temperature.	. This calculation		
The critical temperature, $\theta_{a,cr}$ is given by:		EN 1993	-1-2
$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0.9674 \mu_0^{3.833}} - 1 \right] + 482$		4.2.4(2)	
where the degree of utilisation, μ_0 , is given by:			
$ \mu_{\rm o} = \frac{E_{\rm fi,d}}{R_{\rm fi,d,0}} $ but not less than 0.013		EN 1993 4.2.4(3)	-1-2
As lateral torsional buckling is not a potential failure mode, μ_0 may conservatively be obtained from:		EN 1993 4.2.4(4)	-1-2
$\mu_0 = \eta_{\rm fi} \frac{\gamma_{\rm M,fi}}{\gamma_{\rm M0}}$			

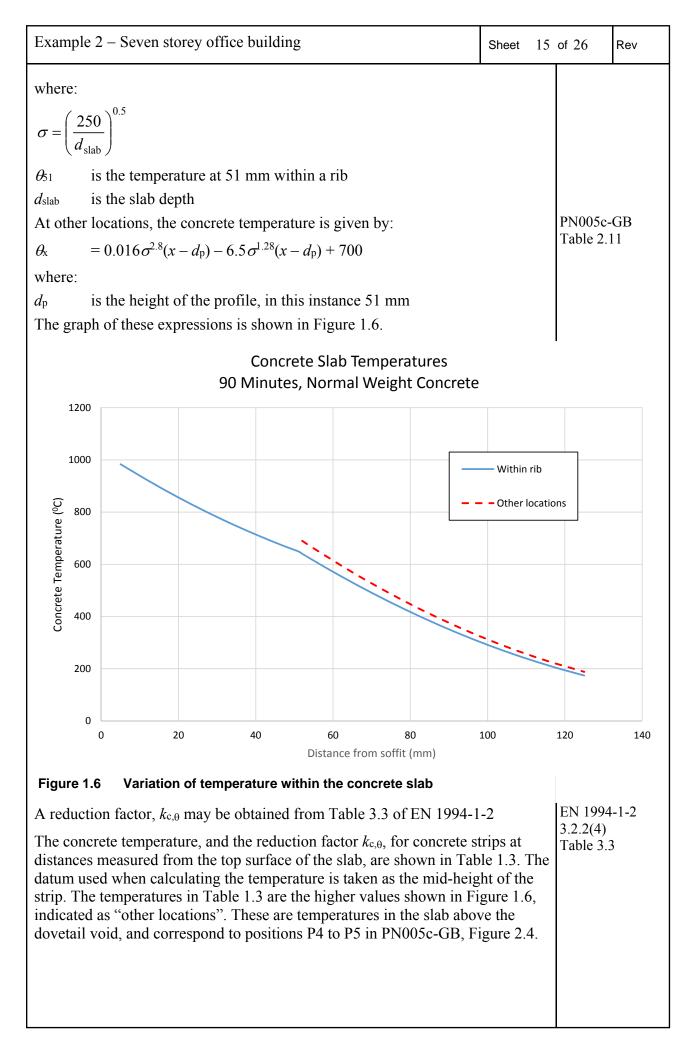
Examp	ple 2 – Seven storey office building	Sheet 9	9 of 26	Rev
where	$\eta_{\rm fi}$ is the reduction factor calculated above. ($\eta_{\rm fi} = 0.556$)			
Both <i>γ</i>	$M, fi and \gamma M0 = 1.0$		EN 1993 2.3(2) UK NA EN 1993	to
	itical temperature for composite beams may be calculated using sion 4.22 of EN 1993-1-2 (shown above).		LIUIDO	9-1-1
	hat Table NA.1 of The UK NA to EN 1993-1-2 (which provides a for critical temperatures) does not cover composite beams.	lefault		
The cr	itical temperature is given by:			
$ heta_{ m a,cr}$	$= 39.19 \ln \left[\frac{1}{0.9674 \times 0.556^{3.833}} - 1 \right] + 482 = 567^{\circ} \text{C}$			
1.3.4	Design resistance of protected beam in fire			
	esistance of the composite beam at elevated temperature will be very the temperature of the protected member must be determined.	verified.		
The te	mperature increase in a protected member in time interval Δt is g	given by:		
$arDelta heta_{ m a,t}$	$=\frac{\lambda_{p}A_{p}/V}{d_{p}c_{a}\rho_{a}}\frac{\left(\theta_{g,t}-\theta_{a,t}\right)}{1+\phi/3}\Delta t - \left(e^{\phi_{10}^{\prime}}-1\right)\Delta\theta_{g,t}$		EN 1993 4.2.5.2 Express	
where	:			
ϕ	$=\frac{c_{\rm p}\rho_{\rm p}}{c_{\rm a}\rho_{\rm a}}d_{\rm p}A_{\rm p}/V$			
where	:			
$\lambda_{ m p}$	is the thermal conductivity of the fire protection system			
Ap	is the appropriate area of fire protection per unit length of the	member		
d_{p}	is the thickness if the fire protection material (in m)			
Сp	is the temperature independent specific heat of the fire protec material	tion		
$ ho_{ m p}$	is the unit mass of the fire protection material			
$\theta_{\mathrm{g,t}}$	is the gas temperature at time t			
$\theta_{a,t}$	is the steel temperature at time t			
$\varDelta \theta_{\mathrm{g,t}}$	is the increase of the ambient gas temperature during the time	;		
	interval Δt			
expres	hat EN 1994-1-2 presents expression 4.27 from EN 1993-1-2 as ssion 4.8, in a slightly different format, with modified nomenclatu s from the expressions are identical.	ure. The		
$\lambda_{\mathrm{p}}, c_{\mathrm{p}},$	and $\rho_{\rm P}$ are taken from the manufacturer's data.			

Example 2 – Seven sto	rey of	fice building	Sheet 10	of 26	Rev
For this fire protection following data:	board	selected, the manufacturer provided the	e		
Thermal conductivity	$\lambda_{ m p}$	= 0.2 W/mK			
Thickness	d_{p}	= 20 mm			
Density	$ ho_{ m p}$	$= 850 \text{ kg/m}^3$			
Specific heat	$c_{\rm p}$	= 1700 J/kgK			
$\frac{A_{\rm p}}{V} = \frac{\text{internal sur}}{\text{volu}}$	face a me of	$\frac{\text{rea of boarding}}{\text{member}} = \frac{172.2 + 2 \times 358}{7.26} = 12$	2.3 m^{-1}	EN 1993 4.2.5.2(4	
time <i>t</i> and therefore the incremental process, Δt example, a spreadsheet as they vary with time.	e temp t shou t has b In thi	ust be used to determine the gas temper erature of the steel. When undertaking Id not be taken as more than 30 seconds een used to calculate the gas and steel t s example, Δt has been taken as 5 secor al procedure are shown in Figure 1.5. A	the s. In this emperatures ads.		
		of the steel beam is 588°C.			
indicate that the chosen temperature approach	n proto in Sec g the c	al temperature calculated as 567°C and ection is not adequate. However, the cr tion 1.3.3 used a conservative value of actual degree of utilisation would demo gher.	itical the degree		
-		der to demonstrate that the calculated r selected protection system is adequate.	resistance of		
For members with box the height of the profile	1	ction, a uniform temperature may be as	sumed over	EN 1994 4.3.4.2.2	

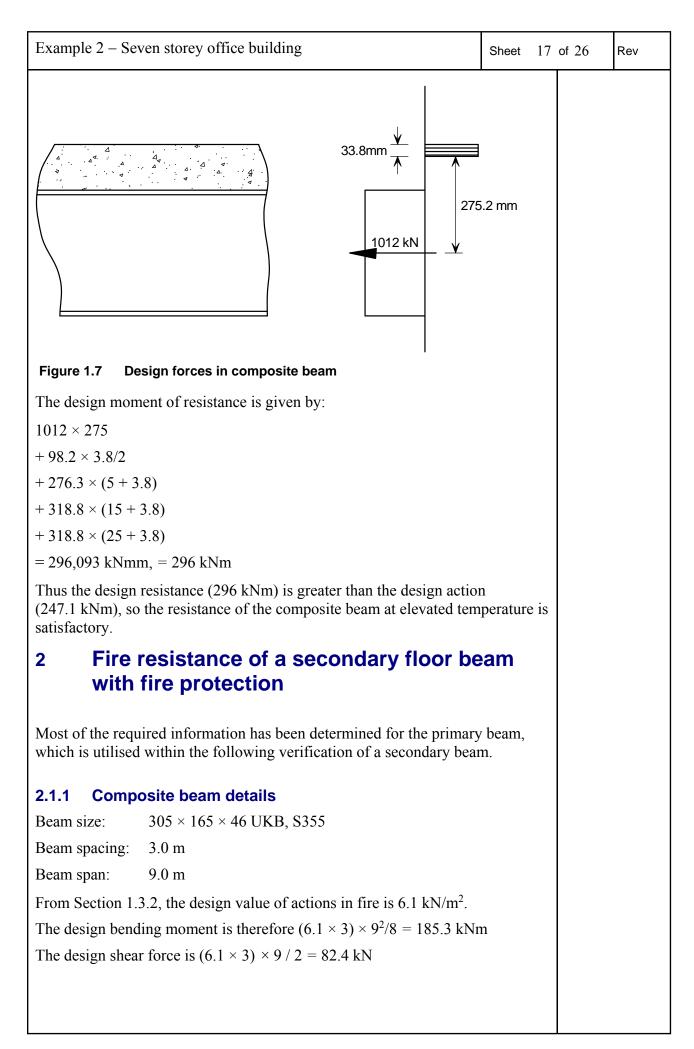
1.4 Vertical shear resistance at elevated temperature

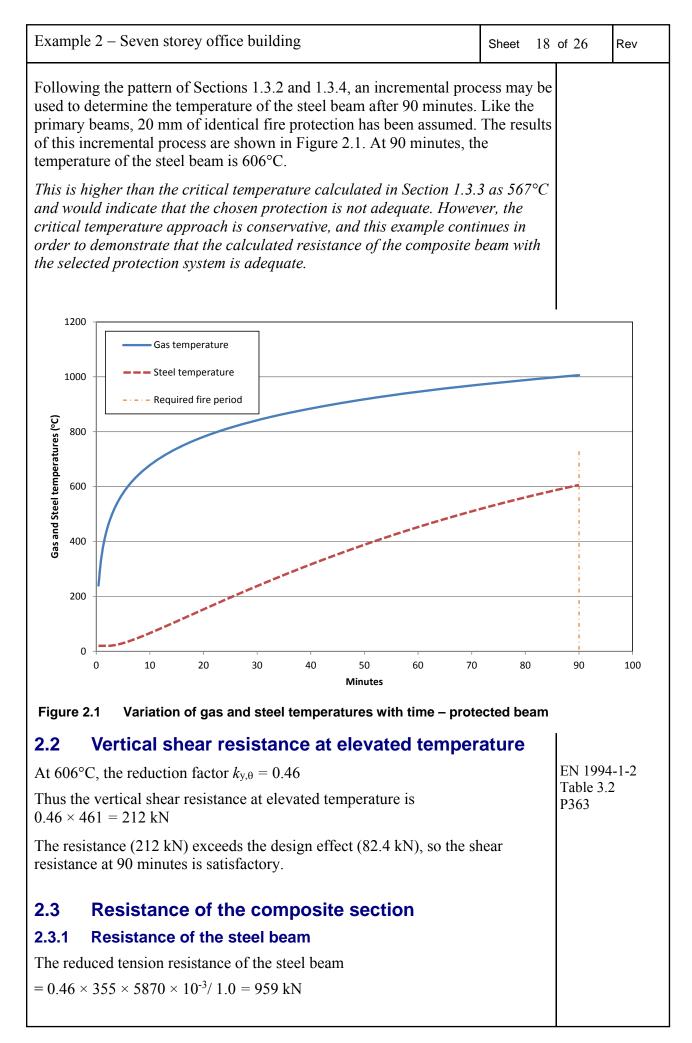
The resistance to vertical shear is to be taken as the resistance of the steel section alone, which may be calculated in accordance with E.4 of Annex E to EN 1994-1-2 Clause E.4 recommends that clause 6.2.2 of EN 1994-1-1 is used to check the vertical shear resistance of a composite section, replacing E_a , f_{ay} , and γ_a with $E_{a,\theta}$, $f_{ay,\theta}$, and $\gamma_{M,fi,a}$ respectively. EN 1994-1-2

EN 1994-1-2


From Table 3.2:

	T 11 2 2
$E_{\mathrm{a},\Theta} = k_{\mathrm{E},\Theta} \times E_{\mathrm{a}}$	Table 3.2
$f_{\mathrm{ay},\theta} = k_{\mathrm{y},\theta} \times f_{\mathrm{ay}}$	
$\gamma_{M,fi,a}$ is given in EN 1994-1-2 clause 2.3(1), and confirmed by the UK National Annex to EN 1994-1-2 as $\gamma_{M,fi,a} = 1.0$	UK NA to EN 1994-1-2 NA.2.5
From Table 3.2, at 588°C:	EN 1994-1-2
$k_{\mathrm{E},\mathrm{\Theta}} = 0.345$	Table 3.2
$k_{\mathrm{y},\mathrm{\theta}} = 0.507$	
According to 6.2.2.2 of EN 1994-1-1, the plastic shear resistance should be calculated in accordance with EN 1993-1-1	EN 1994-1-1 6.2.2.2(2)
The shear resistance at ambient temperature may therefore be taken from P363,	P363
$V_{\rm c,Rd}$ = 501 kN	
At elevated temperature, the shear resistance is given by:	


Example 2 – Seven storey office building	Sheet 12	of 26	Rev
$V_{\rm c,fi,Rd} = 0.507 \times 501 = 254 \rm kN$			
The resistance (254 kN) exceeds the design effect (82.4 kN), so the sh resistance at 90 minutes is satisfactory.	ear		
1.5 Resistance of the composite section			
The resistance of the composite section is determined after calculating reduced resistance of the steel and concrete elements of the section.	; the		
The bending resistance of the composite section maybe calculate by p theory, taking into account the variation of material properties with ter The primary elements in the calculation are the steel resistance, the corresistance and the resistance of the shear studs.	mperature.	EN 1994 4.3.4.2.4	
Steel temperature			
The temperature of the steel beam has already been calculated as 588° 90 minutes. Because the member has box protection, a uniform temper maybe assumed over the height of the steel beam, as A_p/V has been us earlier calculation of the temperature.	rature	EN 1994 4.3.4.2.2	
Concrete temperature			
Although a method for determining the temperatures in a concrete slat in Annex D, this Annex cannot be used, according to the UK National	-	UK NA EN 1994 NA.3	
Non-contradictory complementary information may be found at <u>www.steel-ncci.co.uk</u> . Resource PN005c-GB provides alternative guides	lance.	INA.3	
Stud temperature			
When determining the resistance of a shear stud at elevated temperature temperature of the stud connector and of the concrete may be taken as 40% respectively of the temperature of the upper flange of the steel be	80% and	EN 1994 4.3.4.2.5	
1.5.2 Resistance of the steel beam			
The resistance of the steel beam may be calculated using the reduction yield strength, $k_{y,\theta}$ as given in Table 3.2 of EN 1994-1-2 or Table 3.1 of EN 1993-1-2. <i>(the reduction factor is identical)</i>			
At 588°C, the reduction factor $k_{y,\theta} = 0.507$		EN 1994 Table 3.2	
The resistance of the steel beam in tension is given by:		UK NA	to
$k_{ m y, heta} f_{ m y} A/\gamma_{ m M, ilde{ m n}}$		EN 1994 NA.2.5	-1-2
where $\gamma_{M,fi} = 1.0$			
Thus the reduced tension resistance of the steel beam			
$= 0.507 \times 275 \times 7260 \times 10^{-3}/1.0 = 1012 \text{ kN}$			
1.5.3 Resistance of the shear studs at ambient temperatu	ire		
Firstly, the resistance of the shear studs at ambient temperature must be calculated, as given by equations 6.18 and 6.19 of EN 1994-1-1		EN 1994 4.3.4.2.5	


Example 2 – Seven storey office building	Sheet 13	of 26	Rev
According to equation 6.18; $P_{\rm Rd} = \frac{0.8 f_{\rm u} \pi d^2 / 4}{\gamma_{\rm V}}$		EN 1994 6.6.3.1	-1-1
where f_u is the ultimate strength of the stud, in this case 450 N/mm ² d is the stud diameter, in this case 19 mm γ is the partial factor, taken as 1.25, confirmed by the UK National Annex	onal	UK NA 1 EN 1994 NA.2.3	
Then $P_{\rm Rd} = \frac{0.8 \times 450 \times \pi \times 19^2/4}{1.25} \times 10^{-3} = 81.7 \text{ kN}$			
According to equation 6.19; $P_{\text{Rd}} = \frac{0.29\alpha d^2 \sqrt{f_{\text{ck}} E_{\text{cm}}}}{\gamma_{\text{V}}}$			
Because $h_{sc}/d = 95/15 = 6.33$ (greater than 4), $\alpha = 1$ Then $P_{Rd} = \frac{0.29 \times 1 \times 19^2 \sqrt{25 \times 30500}}{1.25} \times 10^{-3} = 73.1$ kN			
In profiled steel sheeting, the design shear resistance must be multipli reduction factor, k_1	ed by a	EN 1994 6.6.4.1(2	
$k_1 = 0.6 \frac{b_o}{h_p} \left(\frac{h_{sc}}{h_p} - 1 \right) $ but ≤ 1.0			
where b_0 is the distance between ribs, in this case 110 mm h_p is the height of the profile, in this case 51 mm h_{sc} is the height of the shear connector, in this case 95 mm Then $k_1 = 0.6 \frac{110}{51} \left(\frac{95}{51} - 1 \right) = 1.11$, but limited to 1.0			
Thus the minimum resistance, at ambient temperature, $= 1.0 \times 73.1 =$	73.1 kN		
1.5.4 Resistance of the shear studs at elevated temperature. At elevated temperature, $P_{\text{fi,Rd}} = 0.8 k_{\text{u},\theta} P_{\text{Rd}} (P_{\text{Rd}} \text{ from equation 6.18 of EN 1994-1-1}), \text{ or }$	ıre	EN 1994 4.3.4.2.5	
$P_{\text{fi},\text{Rd}} = k_{\text{c},\theta} P_{\text{Rd}} (P_{\text{Rd}} \text{ from equation 6.19 of EN 1994-1-1})$ In both cases, γ_{V} is replaced with $\gamma_{\text{M,fi}}$			
$k_{u,\theta}$ and $k_{c,\theta}$ are taken from Tables 3.2 and 3.3 respectively.		EN 1004	1.2
The temperature of the stud = $0.8 \times 588 = 470^{\circ}$ C From Table 3.2, $k_{u,\theta} = 0.846$		EN 1994 4.3.4.2.5 EN 1994 Table 3.2	(2) -1-2

Example 2 – Seven storey office building	Sheet 14	of 26	Rev
Thus $P_{\rm fi,Rd} = 0.8 \times 0.846 \times \frac{0.8 \times 450 \times \pi \times 19^2/4}{1.0} \times 10^{-3} = 69.1 \text{ kN}$			
The temperature of the concrete = $0.4 \times 588 = 235^{\circ}C$			
Although clause 4.3.4.2.2(16) indicates that no reduction is required for temperatures less than 250°C, Table 3.3 indicates a small reduction.	or		
From Table 3.3, $k_{c,\theta} = 0.915$		EN 1994	
Thus $P_{\rm fi,Rd} = 0.915 \times \frac{0.29 \times 1 \times 19^2 \sqrt{25 \times 30500}}{1.0} \times 10^{-3} = 83.5 \text{ kN}$		Table 3.3	,
Thus the minimum resistance, at elevated temperature, $= 69.1$ kN			
The number of studs over half the span, allowing for 300 mm at the enbeam = $(3000-300)/150 = 18$ studs	nds of the		
Thus the maximum force that can be transferred by the stude is $18 \times 69.1 = 1244$ kN			
Thus the maximum force in the concrete is the minimum of 1244 kN a 1012 kN.	and		
Therefore the force in the concrete = 1012 kN			
1.6 Resistance of the concrete at elevated tempe Although Annex D of EN 1994-1-2 provides information on the temp within a concrete slab, the UK National Annex prohibits the use of Ar Non-conflicting complementary information giving temperatures with concrete slab may be obtained from resource PN005c-GB, obtained fr www.steel-ncci.co.uk.	erature nnex D. iin a	UK NA 1 EN 1994 NA.3	
1.6.1 Minimum slab thickness for adequate insulation			
The minimum slab thickness for a 90 minute fire resistance period is g 110 mm for normal weight concrete. The actual slab is 130 mm, so is satisfactory.	given as	PN005c- Table 3.2	
Expressions for the concrete temperature for normal weight concrete a re-entrant deck are given in Equations 10, 11 and 12, covering up to 5 from the soffit within the ribs, at other locations within the ribs and at not in the rib.	1 mm		
Within a rib, up to 51 mm from the soffit, the concrete temperature is	given by:	PN005c-	
$\theta_{\rm x} = 0.04x^2 - 9.5x + 1030$		Table 2.9	į
where x is the distance above the soffit			
At other depths within a rib, the concrete temperature is given by:		PN005c-	
$\theta_{\rm x} = 0.016 \sigma^{2.4} - 6.3 \sigma^{1.1} + \theta_{51}$		Table 2.1	10

	temperatures and reduction	factors		
Strip (from top surfac	e) Datum (mm) (from top surface)	Concrete temperature (°C) (See Figure 1.6)		n factor <i>k</i> _{c,θ} Table 3.3)
0 – 10 mm	5	188	·	1.0
10 – 20 mm	15	232		1.0
20 – 30 mm	25	283	0.	867
30 – 40 mm	35	343	0.	807
40 – 50 mm	45	410	0.	734
50 – 60 mm	55	486	0.	621
60 – 70 mm	65	570	-	496
70 – 80 mm	75	661	0.	358
.6.2 Effective w	idth			
Effective width $b_{\rm eff} =$	$2 \times 6000/8 = 1500 \text{ mm}$			N 1994-1-1
				4.1.2(5)
	of the concrete slab			N 1994-1-2 3.1(4)
The resistance of the α x _{slab} A _j $k_{c,\theta,j} f_{c,j}/\gamma_{M,fi,c}$	concrete is given by:		4.	5.1(4)
where:				
x_{slab} is a coefficient block. $\alpha_{slab} =$	nt accounting for the assum	ption of a rectangular s	stress	
4_j is the area of				
	on factor for the j^{th} strip			
-	stance of the strip between 5	0 and 60 mm is given	bv:	
-	$621 \times 25 \times 10^{-3} / 1.0 = 198$	-	5	
The resistance of each in Table 1.4.	n strip, based on an effective	width of 1500 mm, is	shown	
	e of the concrete slab, in str	ips from the upper surf		
Strip	Resistance (kN)	Cumulative resista	ance (kN)	
Strip 0 – 10 mm	318.8	318.8	ance (kN)	
Strip			ance (kN)	

Example 2 – Seven storey office building	Sheet 19	of 26	Rev
			1
2.3.2 Resistance of the shear studs at ambient temperate	ure		
Following the calculation process in Section 1.5.3, the basic stud resi identical (81.7 kN and 73.1 kN from expression 6.18 and 6.19 respec		EN 1994 4.3.4.2.5	
When the decking is transverse to the span, the calculated resistances multiplied by the reduction factor k_t , as given by:	must be	EN 1994 6.6.4.2	4-1-1
$k_{\rm t} = \frac{0.7}{\sqrt{n_{\rm r}}} \frac{b_{\rm o}}{h_{\rm p}} \left(\frac{h_{\rm sc}}{h_{\rm p}} - 1 \right)$			
where:			
$n_{\rm r}$ is the number of studs in one rib (assumed here to be 1)			
<i>b</i> _o is the clear distance between ribs, given by the manufacturer 110 mm	as		
$h_{\rm sc}$ is the height of the stud (95 mm in this instance)			
$h_{\rm p}$ is the height of the profile, given by the manufacturer as 51	mm		
Then $k_t = \frac{0.7}{\sqrt{1}} \frac{110}{51} \left(\frac{95}{51} - 1 \right) = 1.3$			
$k_{\rm t}$ is also limited by the maximum value given in Table 6.2, and for the (assumed to be less than 1 mm thick), for through-deck welding, the value is 0.85		EN 1994 Table 6.	
Thus the revised values of resistance are:			
From expression 6.18, $P_{Rd} = 81.7 \times 0.85 = 69.5 \text{ kN}$			
From expression 6.19, $P_{Rd} = 73.1 \times 0.85 = 62.1 \text{ kN}$			
2.3.3 Resistance of the shear studs at elevated temperat	ure		
The temperature of the stud = $0.8 \times 606 = 485^{\circ}C$		EN 1994	
From Table 3.2, $k_{u,\theta} = 0.813$		4.3.4.2.5 EN 1994 Table 3.	4-1-2
Thus based on equation 6.18,		EN 1994	
Thus $P_{\rm fi,Rd} = 0.8 \times 0.813 \times 69.5 \times 1.25 = 56.5 \text{ kN}$		4.3.4.2.5	(1)
The temperature of the concrete $= 0.4 \times 606 = 242^{\circ}C$		EN 1994	
From Table 3.3, $k_{c,\theta} = 0.908$		Table 3.	3
Thus based on equation 6.19,			
Thus $P_{\rm fi,Rd} = 0.908 \times 62.1 \times 1.25 = 70.5 \text{ kN}$			
Thus the minimum resistance, at elevated temperature, $= 56.5$ kN			
The number of studs over half the span, allowing for 150 mm at the e beam = $(4500-150)/150 = 29$ studs	ends of the		
Thus the maximum force that can be transferred by the stude is $29 \times 56.5 = 1639$ kN			


Example 2 – Seven storey	office building		Sheet 20	of 26	Rev
Thus the maximum force in the concrete is the minimum of 1639 kN and 959 kN.					
Therefore the force in the concrete = 959 kN					
2.4 Resistance of the concrete at elevated temperature					
The calculations to determine factors are identical to the presence of the pre	process described in Sect	ion 1.6. The conc			
2.4.1 Effective width Effective width $b_{\text{eff}} = 2 \times 9$	000/8 = 2250 mm			EN 1994 5.4.1.2(5	
The resistance of each strip in Table 2.1	, based on an effective w	ridth of 2250 mm	, is shown		
	ne concrete slab, in strips				
Strip	Resistance (kN)	Cumulative res			
0 – 10 mm 10 – 20 mm	478.1 478.1	478. 956.			
20 – 30 mm	414.5	1370.			
and 959 kN may be ignored. Thus the plastic neutral axis is at 20 mm from the top surface of the slab. The design moment resistance of the composite beam at elevated temperature is given by the summation of the design forces, multiplied by their lever arms, as					
shown in Figure 2.2.		20 mm ↓ 959 kN	263.3 mm		
Figure 2.2 Design forces	s in composite beam				

Example 2 – Seven storey office building	Sheet 21	of 26	Rev
The design moment of resistance is given by:			
959 × 263.3			
+ 478.1 × 5			
+ 478.1 × 15			
= 262,067 kNmm = 262 kNm			
Thus the design resistance (262 kNm) is greater than the design action (185.3 kNm), so the resistance of the composite beam at elevated temp satisfactory.			
2.5 Fire resistance of a column (ground to first fl	oor)		
This section of the example demonstrates the verification of an internal column $(305 \times 305 \times 158 \text{ UKC } \text{S355})$ at the lower level, in accordance with the simplified calculation model described in EN 1993-1-2. The column is firstly considered unprotected, and then with the addition of board protection.			
2.5.1 Verification at normal temperature			
Axial force due to permanent actions, $G_k = 1751 \text{ kN}$			
Axial force due to variable actions, $Q_k = 1377 \text{ kN}$			
Design combination value of actions, using expression 6.10 from EN 1990, is given by:			ctors
$N_{\rm Ed} = 1.35 \times 1751 + 1.5 \times 1377 = 4429 \rm kN$			NA to
The chosen column section, a $305 \times 305 \times 158$ UKC S355 is at least a Class 2 Section at ambient temperature.			
This may be verified by inspecting the "n limit" given on page D-200 of P363. The selected column section is at least Class 2 at all levels of axial load, and therefore the resistance is based on the gross area.			
Design resistance of the cross-section:			
$N_{\rm c,Rd} = N_{\rm pl,Rd} = A f_{\rm y} / \gamma_{\rm M0}$		EN 1993	-1-1
$= 6930 \text{ kN} > N_{\text{Ed}}$ therefore OK		6.2.4 P363	
Design buckling resistance of the cross-section:		EN 1993-	-1-1
$N_{\rm b,Rd} = \chi A f_{\rm y} / \gamma_{\rm M1}$		6.3.1.1	
The length of the bottom storey column is estimated to be 4430 mm. Assuming a buckling length of $1.0 \times$ system length, the buckling resistance (interpolated from P363) is 4930 kN			
$N_{\rm b,Rd}$ = 4930 kN > $N_{\rm Ed}$ therefore OK			
2.5.2 Design loading at elevated temperature			
Design compression force at elevated temperature, $N_{\text{fi,Ed}}$ is given by:			
$N_{\rm fi,Ed} = \eta_{\rm fi} {\rm N}_{\rm Ed}$		EN 1993 2.4.2(2)	-1-2

Example 2 – Seven storey office building	Sheet 22	of 26	Rev	
The reduction factor for design load level in the fire situation is given by: $\eta_{\text{fi}} = \frac{G_{\text{k}} + \psi_{\text{fi}}Q_{\text{k},1}}{\gamma_{\text{G}}G_{\text{k}} + \gamma_{\text{Q},1}Q_{\text{k},1}}$			EN 1993-1-2 2.4.2(3) Expression 2.5	
$\psi_{\text{fi}} \text{ is to be taken as } \psi_{1.1} \text{ according to the UK NA to EN 1991-1-2}$ The value of $\psi_{1.1}$ is taken from the UK NA to EN 1990, for (in this instance), office areas. $\psi_{\text{fi}} = \psi_{1,1} = 0.5$ $\eta_{\text{fi}} = \frac{1751 + 0.5 \times 1377}{1.35 \times 1751 + 1.5 \times 1377} = 0.55$			0 1-2 0 A1.1	
Hence: $N_{\rm fi,Ed} = 0.55 \times N_{\rm Ed} = 0.55 \times 4429 = 2436 \rm kN$				
 2.6 Design buckling resistance of unprotected of at elevated temperature 	column			
The design buckling resistance in fire is given by:		EN 1993 4.2.3.2(1		
$N_{b,fi,t,Rd} = \chi_{fi} A k_{y,\theta} f_y/\gamma_{Mfi}$ The UK National Annex to EN 1993-1-2 suggests the use of the value factors for materials at elevated temperature recommended in EN 1990 clause 2.3. Therefore:	-		,	
γ _{Mfi} = 1.0		EN 1993	-1-2	
$f_y = 345 \text{ N/mm}^2 \text{ (as } t_f > 16 \text{ mm)}$		2.3(2)	1.0	
$k_{y,\theta}$ is the reduction factor for effective yield strength from Table EN 1993-1-2	e 3.1 of	EN 1993 Table 3.1		
The area to be used in the preceding calculation depends on the section classification, which may vary at elevated temperature.	on			
2.6.1 Section classification				
Although the column is at least Class 2 at normal temperature, the cla at elevated temperature may differ, as according to clause 4.2.2 of EN $\varepsilon = 0.85 \sqrt{\frac{235}{f_y}}$				
Thus $\varepsilon = 0.85 \sqrt{\frac{235}{f_y}} = 0.85 \sqrt{\frac{235}{345}} = 0.7$ ($f_y = 345$ N/mm ² , since $16 < t_y$	$f_{\rm f} < 40)$			
For the web;				
c/t for a 305 × 305 × 158 UKC = 15.6				
Class 1 limiting value = $33\varepsilon = 33 \times 0.7 = 23.1$		EN 1993 Table 5.2		
Thus the web is Class 1			-	

Example 2 – Seven storey office building	Sheet 23	of 26	Rev	
For the flange;			P363	
c/t for a 305 × 305 × 158 UKC = 4.22				
Class 1 limiting value = $9\varepsilon = 9 \times 0.7 = 6.3$			-1-1	
Thus the flange is Class 2		Table 5.2	2	
Therefore, at elevated temperature, the column is Class 2.				
For a Class 2 section, the gross area is used in design.				
$A = 20100 \text{ mm}^2$		P363		
For intermediate storeys of a braced frame with separate fire compartmediate buckling length may be taken as $l_{\rm fi} = 0.5L$. Therefore:	ents, the	EN 1993-1-2 4.2.3.2(5)		
Buckling length, $L_{cr} = L_{fi}$ 0.5 × 4430 = 2215 mm				
The non-dimensional slenderness (at ambient temperature)		EN 1993	-1-1	
$\overline{\lambda} \qquad = \frac{L_{\rm cr}}{i} \frac{1}{\lambda_{\rm l}}$		6.3.1.3		
where:				
$\lambda_1 = 93.9\varepsilon = 93.9\sqrt{235/355} = 76.4$				
The non-dimensional slenderness at an elevated steel temperature, $\overline{\lambda_{\theta}}$ is given by:			-1-2)	
$\overline{\lambda}_{\theta} = \overline{\lambda} \left[k_{\mathrm{y},\theta} / k_{\mathrm{E},\theta} \right]^{0.5}$				
Reduction factor χ_{fi}				
The reduction factor for buckling at elevated temperature, χ_{fi} , is given	by:			
$\chi_{\rm fi} = \min(\chi_{\rm y,fi}, \chi_{\rm z,fi})$				
For this section, with the same buckling length and restraint conditions in both axis, it is clear by inspection that buckling in the minor axis will be critical and only this axis needs to be considered. To determine the reduction factor:			-1-2	
1. The non-dimensional slenderness $\overline{\lambda}$ is calculated (at ambient temp	oerature).			
2. The reduction factors $k_{y,\theta}$ and $k_{E,\theta}$ are determined from Table 3.1 c EN 1993-1-2.	of			
3. The non-dimensional slenderness at elevated temperature is calcula $\overline{\lambda}_{z,\theta} = \overline{\lambda}_{z} [k_{y,\theta} / k_{E,\theta}]^{0.5}$	ted:			
4. ϕ_{θ} is calculated, given by:				
$\phi_{\theta} = \frac{1}{2} \left[1 + \alpha \overline{\lambda}_{\theta} + \overline{\lambda}_{\theta}^2 \right]$ where $\alpha = 0.65 \sqrt{235/f_y}$				
The reduction factor χ_{fi} is calculated, given by:				
$\chi_{\mathrm{fi}} = rac{1}{\phi_{\mathrm{ heta}} + \sqrt{\phi_{\mathrm{ heta}}^2 - \overline{\lambda}_{\mathrm{ heta}}^2}}$				

Example 2 – Seven storey office building	Sheet 24	of 26	Rev
Because $\overline{\lambda}_{z,\theta}$ and therefore χ_{fi} are temperature dependant, an increment process is required to calculate the design resistance at each temperature time to failure is determined as the time when the design resistance fail the design effect (which in this example is 2436 kN)	re. The		
2.6.2 Steel temperature			
The change in steel temperature in time interval Δt is given by:			
$\Delta \theta_{\rm a,t} = k_{\rm sh} \frac{A_{\rm m}/V}{c_a \rho_a} \dot{h}_{\rm net} \Delta t$		EN 1993 4.2.5.1	-1-2
(nomenclature as previously defined)			
For an unprotected member, the reduction factors for the materials are defined for the beam design.	as		
For the selected column $305 \times 305 \times 158$ UKC, exposed on four sides	,		
$\frac{A_{\rm m}}{V} = \frac{1840}{20.1} = 91.5 {\rm m}^{-1}$		P363	
$\left[\frac{A_{\rm m}}{V}\right]_{\rm b}$ is the box value of the section factor (the value for a rectangu	lar box		
that surrounds the profile).			
$\left[\frac{A_{\rm m}}{V}\right]_{\rm b} = \frac{(2b+2h)}{A} = \frac{(2\times327.1+2\times311.2)}{20.1} = 63.5 {\rm m}^{-1}$			
$k_{\rm sh} = 0.9[A_{\rm m}/V]_{\rm b}/[A_{\rm m}/V]$		EN 1993 4.2.5.1(2	
$= 0.9 \times 63.5/91.5 = 0.62$		4.2.3.1(2)
2.6.3 Design buckling resistance of an unprotected colun elevated temperature	nn at		
A spreadsheet may be used to calculate the gas temperature, the steel temperature and therefore the design resistance at elevated temperature Figure 2.3 shows the results of the process. The design resistance (plot right hand axis) falls to the design action (2436 kN) at a time of 22.8 r As this is less than the required fire resistance period, (90 minutes), the unprotected solution is unsatisfactory. The critical temperature when the resistance falls below the design action is 608°C.	tted on the ninutes.		
Note that in Figure 2.3, the design resistance is limited to 4930 kN, the resistance at ambient temperature.	e design		

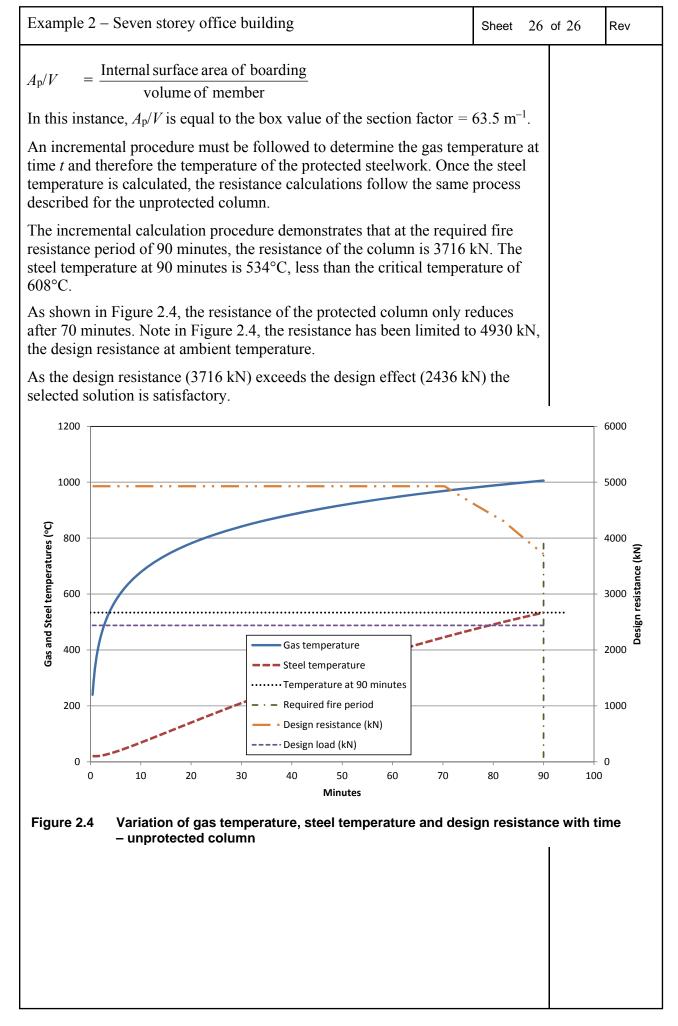
2.7 Design resistance of protected column at elevated temperature

Try encasing the beam with 15 mm of fire protection board.

The temperature increase in a protected member in time interval Δt is given by:

$$\Delta \theta_{a,t} = \frac{\lambda_p A_p / V}{d_p c_a \rho_a} \frac{\left(\theta_{g,t} - \theta_{a,t}\right)}{\left(1 + \phi/3\right)} \Delta t - \left(e^{\phi/10} - 1\right) \Delta \theta_{g,t}$$
EN 1993-1-2
4.2.5.2
Expression 4.27

where:


$$\phi \qquad = \frac{c_{\rm p}\rho_{\rm p}}{c_{\rm a}\rho_{\rm a}} d_{\rm p} A_{\rm p}/V$$

(all nomenclature as previously defined)

 $\lambda_{\rm p}$, $c_{\rm p}$, and $\rho_{\rm p}$ are taken from the manufacturer's data.

For this fire protection board selected, the manufacturer provided the following data:

Thermal conductivity	$\lambda_{ m p}$	= 0.2 W/mK
Thickness	d_{p}	= 15 mm
Density	$ ho_{ m p}$	$= 800 \text{ kg/m}^3$
Specific heat	\mathcal{C}_p	= 1700 J/kgK

