AD 475: **Buckling of cruciform columns**

The SCI's Advisory Desk has been asked about the design of cruciform columns to Eurocode 3. This structural shape is sometimes adopted for architectural reasons. Its behaviour is unusual when the section is made of plates without flanges and has rotational symmetry of four, in the respect that the likely critical buckling mode is torsional, not flexural.

Unusually, the formula for the elastic critical torsional buckling force for an I section is given in BS EN 1993-1-1 and appears in para BB.3.3.1:

$$N_{\rm crT} = \frac{1}{i_{\rm s}^2} \left(\frac{\pi^2 E I_{\rm z} a^2}{L_{\rm t}^2} + \frac{\pi^2 E I_{\rm w}}{L_{\rm t}^2} + G I_{\rm T} \right)$$

In this formula, $i_s^2 = i_v^2 + i_z^2 + a^2 = and a$ is the distance between the axis of rotation and the shear centre of the section. L_{t} is the length between torsional restraints. The intersection of the rectangular elements that form the cross section is its shear centre and when rotation

occurs about this axis, the value of a is zero. As the section is bi-symmetric, the shear centre coincides with the geometric centroid of the cross section.

The absence of flanges at the ends of the plates remote from the shear centre results in a zero value for the warping constant I_w.

Making these simplifications means that the formula for $N_{\rm crT}$ reduces to:

$$N_{\rm crT} = \frac{A}{I_{\rm y} + I_{\rm z}} \, GI_{\rm T}$$

For a cruciform column with end moments. a lateral torsional buckling check can be carried out using the general formula for lateral torsional buckling in BS EN 1993-1-1. The value of M_{cr} can be determined using the same formula as that for a flat plate:

$$M_{\rm cr} = \frac{\pi}{L} \sqrt{E I_{\rm z} G I_{\rm T}}$$

1

This formula is relevant to a uniform moment. Useful references are Design of cruciform sections using BS 5950-1:2000¹, AD391² and Timoshenko and Gere³.

Contact: Richard Henderson Tel· 01344 636555 Email¹ advisory@steel-sci.com

- 1. Charles King, Design of cruciform sections using BS 5950-1:2000, NSC, April 2006
- 2. AD391: Lateral torsional buckling of rectangular plates in accordance with BS EN 1993-1-1, SCI
- 3. Timoshenko, SP and Gere, JM, Theory of elastic stability, 2nd Edition, Dover Publications Inc, 2009.

Visit www.SteelConstruction.info

All you need to know about Steel Construction

STEEL for life Everything construction professionals need to know to optimise the design and construction of steel-framed buildings and bridges can be easily accessed in one place at www.SteelConstruction.info

This online encyclopedia is an invaluable first stop for steel construction information. Produced and maintained by industry experts, detailed guidance is provided on a wide range of key topics including sustainability and cost as well as design and construction.

This is supported by some 250 freely downloadable PDF documents and over 500 case studies of real projects.

The site also provides access to key resources including:

- The Green Books The Blue Book
- Advisory Desk Notes
- Eurocode design guides
- Steel section tables
- Steel design tools

Explore the full content of www.SteelConstruction.info using the index of main articles in the quick links menu, or alternatively use the powerful search facility.