Web-post buckling in P355

In P355, the buckling length of the web-post for closely spaced openings is given by:

\[\ell_w = 0.7(h_o^2 + s_o^2)^{0.5} \]
(1)

For circular or elongated openings:

\[\ell_w = 0.5(h_o^2 + s_o^2)^{0.5} \]
(2)

where:

- \(h_o \) is the opening height
- \(s_o \) is the edge-to-edge distance between the openings.

For rectangular and elongated openings, the maximum opening length is \(\ell_w \leq 2.5 h_o \) for unstiffened openings and the minimum edge-to-edge spacing, \(s_o \), should exceed 0.5 \(\ell_w \). In comparison, for circular openings, \(t_o \geq 0.1 h_o \) for steel beams and \(\geq 0.3h_o \) for composite beams.

Relaxation for adjacent rectangular openings

For adjacent rectangular openings, it is now accepted that to align with the work on large web openings in the new part of Eurocode 3, EN 1993-1-13, the maximum buckling length for web-post buckling between rectangular openings of the same height may be taken as:

\[\ell_w \leq h_o \]
(3)

This leads to an upper bound nondimensional slenderness of the web-post given by:

\[\lambda_{wp} = \frac{3.5h_o}{t_o\lambda_1} \]
(4)

where:

\(\lambda_1 = \frac{\pi^2 E}{f_y} \) is the critical slenderness of the web-post

\(\lambda_{wp} \) is used to obtain \(\chi_{wp} \), which is the reduction factor due to buckling of the web-post acting as a strut. For rolled sections, buckling curve ‘a’ in EN 1993-1-1 may be used and for fabricated sections, buckling curve ‘c’ should be used. The buckling resistance of the web-post is given by:

\[N_{wp,Rd} = \chi_{wp} t_{wp,Ed} f_y / (B f_{yEd}) \]
(5)

where:

- \(t_{wp,Ed} \) is the smaller web thickness above/below the opening
- \(f_y \) is the yield strength of the steel

This buckling resistance is compared to the horizontal shear force, \(V_{wp,Ed} \), acting in the web-post. The upper bound shear resistance is given by \(V_{wp,Ed} = V_h \) which corresponds to pure shear resistance of the web-post rather than buckling.

For rectangular openings, a further check should be made on the in-plane moment acting at the top or bottom of the web-post due to the effects of horizontal shear, which may control for narrow web-posts. For a symmetric section, this moment is given by \(0.5V_{wp,Ed} h_o \) which should not exceed the in-plane bending resistance of the web-post, which is taken as \(t_{wp,Ed}^2 f_y / (B f_{yEd}) \).

Relaxation for adjacent circular and elongated openings

The maximum buckling length for web-post buckling between circular or elongated openings of the same height may be taken as:

\[\ell_w \leq 0.7 h_o \]
(6)

This leads to an upper bound nondimensional slenderness of the web-post given by:

\[\lambda_{wp} \leq \frac{2.4h_o}{t_o\lambda_1} \]
(6)

The design of composite beams with large web openings is presented in SCI P355, which has been adopted in the development of software for the design of both hot rolled and fabricated steel sections with openings of various shapes and sizes. In P355, the method for addressing web buckling next to or between rectangular or elongated openings identifies two cases; closely spaced and widely spaced openings. For rectangular openings, the transition between the two cases is taken at an edge-to-edge spacing \(s_o \), equal to the length of the opening \(\ell_w \). For elongated openings, this transition occurs at an equivalent opening length, which may be taken as \(\ell_w = 0.55h_o \).

For widely spaced openings, web buckling next to an opening is checked by considering the local transfer of the vertical shear force in the Tees acting on a strut of width equal to half the opening depth.

For closely spaced openings, the relevant compression force acting on the equivalent strut is taken as equal to the horizontal shear force in the web-post and the check for web-post buckling is based on an inclined strut whose slenderness depends on the spacing of the openings.

The issue in the design of beams with large web openings is the potentially high ‘step’ in the shear resistance at the transition between closely and widely spaced openings, which occurs due to the high slenderness of the inclined strut. To partly reduce this issue, some changes in the application of P355 are now appropriate, which relax the current rules for long openings. These relaxations align with the current work to provide normative clauses on the design of beams with large web openings in Eurocodes 3 and 4.
Relaxation for adjacent circular and rectangular openings

For adjacent circular and rectangular openings, or openings of different lengths, it is proposed that the transition between closely spaced and widely spaced openings is taken as the average of the two opening lengths. For adjacent circular and rectangular openings, this corresponds to a transition at an edge-to-edge spacing of $s_e = 0.5(\ell_e + h_e)$. It is proposed that the minimum edge-to-edge spacing is 0.25($\ell_e + h_e$) for the case of adjacent rectangular and circular openings. The upper bound nondimensional slenderness of the web-post is taken as the average of the two openings.

A further AD will address unequal opening height and positions in the beam depth.

Contact: Prof Mark Lawson
Tel: 01344 636555
Email: advisory@steel-sci.com

New and revised codes & standards

From BSI Updates April 2018

BS EN PUBLICATIONS

BS EN ISO 9017:2018
Destructive tests on welds in metallic materials. Fracture test
Supersedes BS EN ISO 9017:2013

BS EN ISO 13918:2018
Welding. Studs and ceramic ferrules for arc stud welding
Supersedes BS EN ISO 13918:2008

BS EN ISO 17633:2018
Welding consumables. Tubular cored electrodes and rods for gas shielded and non-gas shielded metal arc welding of stainless and heat-resisting steels. Classification
Supersedes BS EN ISO 17633:2010

BS EN ISO 26304:2018
Welding consumables – Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels – Classification
Supersedes BS EN ISO 26304:2011

UPDATED BRITISH STANDARDS

BS EN 1993-4-2:+A1:2017
Eurocode 3. Design of steel structures. Tanks
Amendment, February 2018

BRITISH STANDARDS WITHDRAWN

BS EN ISO 9017:2013
Destructive tests on welds in metallic materials. Fracture test
Superseded by BS EN ISO 9017:2018

BS EN ISO 13918:2008
Welding. Studs and ceramic ferrules for arc stud welding
Superseded by BS EN ISO 13918:2018

BS EN ISO 17633:2010
Welding consumables. Tubular cored electrodes and rods for gas shielded and non-gas shielded metal arc welding of stainless and heat-resisting steels. Classification
Superseded by BS EN ISO 17633:2018

BS EN ISO 17633:2018
Welding consumables. Tubular cored electrodes and rods for gas shielded and non-gas shielded metal arc welding of stainless and heat-resisting steels. Classification
Superseded by BS EN ISO 17633:2018

BS EN ISO 26304:2011
Welding consumables – Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels – Classification
Superseded by BS EN ISO 26304:2017

NEW WORK STARTED

ISO 8504-1
Preparation of steel substrates before application of paints and related products. Surface preparation methods. General principles
Will supersede BS EN ISO 8504-1:2001

ISO 8504-2
Preparation of steel substrates before application of paints and related products. Surface preparation methods. Abrasive blast-cleaning
Will supersede BS EN ISO 8504:2:2001

ISO 11124-5
Preparation of steel substrates before application of paints and related products. Specifications for metallic blast-cleaning abrasives. Steel cut wire shot
ISO 13918:2017/A1
Welding. Studs and ceramic ferrules for arc stud welding

ISO 15609-1
Will supersede BS EN ISO 15609-1:2004

ISO 15614-1:2017/A1
Specification and qualification of welding procedures for metallic materials. Welding procedure test. Arc and gas welding of steels and arc welding of nickel and nickel alloys

ISO PUBLICATIONS

ISO 12944-5:2018
Paints and varnishes. Corrosion protection of steel structures by protective paint systems. Protective paint systems
Will be implemented as an identical British Standard

GRADES S355JR/J0/J2