Floor systems

From Steelconstruction.info

Jump to: navigation, search

The aim of this article is to highlight the requirements that may exist for a given building project, and indicate how these requirements should drive the designer towards the most appropriate and cost effective choice of floor system.

The range of steel based floor systems is presented in general terms, with the advantages and disadvantages of each system identified so that these can be compared against the requirements of a given project. The article does not go into technical detail about the different types of composite , long span , and shallow floor solutions.

DSCF0025 (Richard Lees Steel Decking).JPG

Installing re-entrant steel decking
(Image courtesy of Richard Lees Decking)

Contents

[top] What drives the choice of floor system?

Different buildings have different requirements, so not surprisingly there is no 'one size fits all' most appropriate solution. Clearly the requirements vary depending on the type of use, but there are also some more subtle issues to consider and these are highlighted below.

It should not be forgotten that when considering intended use, it may be appropriate to pay attention to a different use in the future - many steel solutions offer flexibility that can result in high levels of sustainability over the lifetime of a building.

[top] Simplicity and familiarity

As a rule of thumb designers should adopt the simplest solution that will meet the project requirements. Generally speaking the simplest solution will also be the most common, and familiarity will facilitate the design, fabrication and erection processes as no new learning is involved.

Within the context of steel floor systems, simple also means less labour and cost . For example, the simplest solution of a downstand solid web I-section beam as opposed to a truss means; fewer structural elements, less fabrication , fewer surfaces to be fire protected, less time to design.

It is worth adding that this 'simple is best' philosophy also extends to frames as a whole - a simple braced frame will normally be a more economical solution than a moment resisting frame.

[top] Speed of construction

C9fig1.jpg

Rapid construction using steel composite construction and steel infill walls

For some projects the need to reduce to a minimum the construction time (on site) may play a determining role. Indeed, time is often one of the key drivers for choosing a steel solution. The need for speed may be driven by, for example, fitting in with vacation breaks for educational buildings , or bringing in income (e.g. retail buildings). It can lead to consideration of options that minimise wet trades on site (use of precast floor units), minimise the number of crane lifts and provide working platforms during construction (profiled steel decking), and that do not require propping between floors.

[top] Service integration

Fig 1 Services integrated within the structural floor depth.png

Services integrated within the structural floor depth
The volume of services needed in a building is clearly a function of the end use - hospitals being an obvious example of a highly serviced building - and design philosophy adopted by the services engineer, e.g. air-conditioned, naturally ventilated, etc.


When a lot of service ducts are to be accommodated it may be beneficial to adopt a floor solution that provides a flat soffit in order to maximise the flexibility in routing these ducts beneath the structural floor. It will also be easy to remove and/or replace these ducts to meet future needs.

Solutions that provide a flat soffit don't also allow long spans. So an alternative in a building that is both highly serviced and requires long-span floors is to integrate the services within the beam depth (as shown in the figure on the right), so that the total depth of structural floor plus service zone is minimised.

[top] Need for adaptable space

C9fig2.png

Open floor area providing flexible, adaptable space

One of the long-recognised benefits of steel frame construction has been its ability to span significant distances. This is particularly true when composite solutions are adopted, given the efficiencies of that form of construction. This spanning ability allows the number of internal load bearing walls and columns to be minimised - open floor spaces can be created, or non load-bearing partitions (that are easily moved) used to form (temporary) individual areas. Adaptability may be more sustainable than the currently fashionable topic of deconstruction, for which steel is also suited. In recent years a number of steel framed office buildings have been reconfigured to provide residential units.

[top] Daylighting requirements

'Deep' floor plans may mean that, for example, office workers are a long way from natural lighting. Long span solutions may not then be the most appropriate solution for certain situations, rather a short span design (for example using shallow floors ) with an internal atrium may provide a more appropriate internal environment. The designer must seek the best compromise.

[top] Aesthetics

If false ceilings are used then the aesthetics of the soffit of a given structural floor system are clearly irrelevant. However, a number of clients have recently been looking for exposed soffits, exposed primarily so that the thermal mass of the floor is exposed. The soffit must also then be visually appealing. In some cases the presence of downstand beams interrupting the soffit may not be welcome, although it is also true that an expressed structure may be desired. A number of steel framed options may therefore be appropriate depending on specific requirements.

[top] Acoustics

C9fig3.jpg

Deansgate, Manchester – office technology applied to an apartment building

The speed with which they can be constructed, combined with excellent performance in service, was one of the reasons why steel frames with composite floors played such a central role in the boom in the multi-storey office market in the UK in the late 1980s and 1990s. When designers wished to transfer this technology to residential buildings some years later, it was recognised that possibly the biggest difference in requirements was issues associated with acoustics .

In terms of resisting airborne sound a massive floor is beneficial, and when considering impact sound avoiding stiff structural connections between components is helpful. Good detailing is needed to avoid flanking issues, where sound travels around a barrier (such as a floor) by passing through an adjoining wall. An example, in accordance with the guidance provided in SCI P372, is shown below.

Numerous apartment buildings have now been constructed using steel frames, with a combination of good detailing and proprietary products used for raised floors, etc providing the necessary levels of performance. Deansgate in Manchester was an early example of this 'technology transfer' (see right).

Fig 2 Junction of a twin light steel frame separating wall with a shallow composite separating floor.png

Junction of a twin light steel frame separating wall with a shallow composite separating floor

[top] Fire resistance

Fire resistance requirements depend on the use and height (number of storeys) of a building. Between 60 minutes and 120 minutes is typical. The most common solution adopted to provide fire resistance is to protect the steel members so that they remain at a sufficiently low temperature (recognising that some loss of steel strength as temperature increases is acceptable as fire loading is less than normal state loading). Intumescent coatings, which are applied off-site and expand with temperature to provide an insulation layer, are often used. If the steel elements are embedded in concrete this can provide the necessary insulation. Other options include board protection and the use of a cementitious spray.

Alternatively, when a 'fire engineering' approach is adopted the steel members are designed so that they are sufficiently strong, even when material strength has been lost due to exposure to fire, to resist the appropriate levels of loading. Extensive guidance, based on full scale fire testing of complete buildings, is available (SCI P375)

[top] Thermal mass

Fig 3 Exposed concrete floors supported on steel beams and used to provide thermal mass.png

Exposed concrete floors supported on steel beams and used to provide thermal mass

Provision of sufficient thermal mass is an important part of a low energy building solution. The mass provides a heat sink that absorbs heat during the day, and then in combination with natural ventilation the heat is purged during the cooler night time. Composite floor slabs may even be constructed with integral water ducts to aid this purging. It is important that the thermal mass is exposed - so false ceilings may be a problem, as is plasterboard attached with dabs to otherwise massive walls. Horizontal elements (floors) are much more effective at providing mass than vertical elements.

When deciding how much mass is needed it is important to consider the occupation pattern of a building. Massive structures can absorb a lot of heat, but they also provide inertia when wanting a building to heat up rapidly. There is a common misconception that a very massive building is best.

[top] Floor stiffness

Stiffness is needed to ensure that a floor behaves correctly from a dynamic point of view, thereby assuring user comfort. This is a complex subject, as the real issue is how the floor responds (in terms of acceleration), and that is a function of a number of variables including stiffness and the mass that is mobilised. The traditional approach, which is recognised as being crude, for designing a floor to respond acceptably is to check its natural frequency and compare that with a limiting value (which is a function of the floor mass). A more thorough approach is recommended, which often yields good, i.e. less conservative but satisfactory, results see SCI P354 .

The required behaviour depends on the function for a given building/room. Some uses are less tolerant to floor movements (e.g. an operating theatre). Some uses (e.g. a gymnasium within an office) are more likely to cause problems and warrant particular attention.

[top] Deconstruction

There has been considerable debate in recent years about deconstruction . The ability to dismantle a building and use the components again elsewhere is clearly attractive from a sustainability point of view, and steel lends itself to such a solution. There are some logistical issues associated with this approach (how do you find the 'used' component that meets your needs) ,but these can no doubt be overcome given the right drivers. There may also be issues to do with efficient use of materials - tying materials together into composite forms of construction makes the most of the different attributes of the individual materials, but also makes them more difficult to separate for re-use.

Deconstruction will certainly be on the agenda in future, but it should be carefully considered.

[top] Cost

As noted above, unless project specific drivers suggest the adoption of a more sophisticated alternative, then the simplest solution should be chosen and this will normally prove to be the most cost effective.

Cost is a fundamental consideration in the selection of the frame and floor system. In November 2011, the BCSA and Tata Steel commissioned Gardiner & Theobald (G&T), Peter Brett Associates (PBA) and Mace Group to undertake an impartial cost comparison study of current construction practice for multi-storey office construction to provide cost and programme guidance for Quantity Surveyors and design teams. The study builds on previous comparisons to reflect developments in construction techniques and changes in prevalence of different structural frame and floor solutions.

As decisions on frame material and configuration will be based on a number of factors, not simply cost, the study also considered the programme and buildability implications for each option. PBA identified and designed representative framing solutions for two typical office buildings (see below). G&T provided cost information for each frame option and Mace considered buildability, logistics and programme.

  • Building 1 - A business park office
  • Building 2 - A city centre office


The cost comparison study illustrates that for both building types, on a like for like basis steel frame and floor solutions are highly competitive. The study has also highlighted the importance of considering total building cost not just structural frame cost, as the choice of the structural frame and floor configuration will have associated impacts on many other elements, including the substructure, roof and external cladding.

[top] Benefits of different floor systems

[top] Slab options

[top] Composite slabs

Fig 4 Decking being laid out on a steel frame.png

Decking being laid out on a steel frame
Composite slabs, comprising reinforced concrete cast on profiled steel decking, are an option whether the beams are downstand or integrated within the slab depth for a shallow floor form of construction. The slabs are normally reinforced using an upper layer of mesh and, occasionally, additional bars in the troughs. Fibre reinforcement may also be used. Spans of up to 4.5 m can be achieved using trapezoidal decking (80 mm deep). Some so-called deep decking profiles also exist (over 200 mm deep), that can span 6 m or so without propping during construction.

Composite slabs are an excellent choice when speed of construction is important. They were a key part of the boom in multi-storey steel framed office construction in London in the 1980s for this reason. Bundles of decking are lifted onto place on the steel structure, for distribution by hand. The number of crane lifts needed, when compared with the precast alternative, is greatly reduced. The ability to stack the pieces of decking into bundles also reduces transport time and costs.

During construction, once in place the decking provides other benefits in terms of acting as a working platform for storage of materials. When appropriately orientated and fixed to the steel beams it can restrain them against lateral torsional buckling see SCI P300 .

Composite floor systems

In the final state the ribs in the decking serve as void formers in the slab, thereby reducing the weight of floor construction with the knock-on benefits this can have. It is also possible to suspend services from the soffit of a composite slab, using anchors that are designed to slot into the decking profile.

A number of methods can be used for controlling the concrete level during construction. Basically, the concrete depth may be kept constant, or the upper surface may be kept level. Depending which of these is chosen the weight of concrete will vary, so it is important that the designer communicates clearly with the site team see SCI AD344 .

When an exposed soffit is required - to expose thermal mass - a thermally transparent suspended ceiling may be used. The additional surface area of the soffit created by the decking (as opposed to a flat concrete face) can be beneficial.

[top] Precast units

Erecting precast floor slabs 003v01 (Atlas Ward).jpg

Erecting precast floor slabs on a steel frame
(Image courtesy of Severfield (Design & Build) Ltd.)

Precast concrete units may be used in conjunction with steel beams. The units may be solid or hollow-core, and with tapered or bluff ends. They are normally prestressed. The beams may also be structurally connected to the slab units to make them 'composite', provided specific detailing rules are satisfied to ensure that the steel section and concrete (in-situ topping plus the precast units) act together. SCI P287 gives further information on this.

Floors using precast units offer a number of benefits. The spanning ability of the units is such that the spacing of secondary beams can be increased (compared to when traditional (60 mm to 80 mm deep) decking profiles are used). The construction system is most efficient for column grids of approximately 9 m by 9 m. The units provide a flat soffit, although there are often issues concerned with the quality of finish.

For semi-exposed applications, such as car parks, precast units may be a more durable alternative than steel decking (although with the correct detailing and coatings it is certainly possible to use decking in such applications).

Precast floors

[top] Downstand beam systems

Economic composite construction.JPG

Trapezoidal decking installed on downstand beams
(Image courtesy of Richard Lees Decking)

The most common type of composite beam is one where, as with a traditional non-composite steel framed solution, the concrete slab sits on top of the top flange of the steel beam. This clearly means that the soffit is interrupted at beam locations by a 'downstand'. The effective span range for this type of solution is around 6 to 12 m, which therefore makes it a competitor to a number of concrete flooring options.

This form of construction benefits from being familiar. It also facilitates making the beams composite when used in conjunction with composite slabs, as through deck welding of the shear studs is possible. Composite beams are two to three times stiffer and stronger than the bare steel section on which they are based.

[top] Long-span beams

A number of variations on the idea of downstand beams is available to meet long-span needs. The use of long span beams results in a range of benefits, including flexible, column free internal spaces, reduced foundation costs, and reduced erection times. Many long span solutions are also well adapted to facilitate the integration of services without increasing the overall floor depth.

By far the most common types of beam used today are plate girders, and beams with web openings (be they cellular , fabricated, or rolled sections).

[top] Shallow floors

Slide13.JPG

Slimdek ‘shallow floor’ system

Shallow floors offer a range of benefits, which must be considered in the context of a given project to identify when they are most appropriate. The shallowness of the floors is achieved by placing the slabs and beams within the same zone. An added benefit is that a flat soffit is achieved - there are none of the interruptions found with downstand beams. Encasing the steel sections within the slab also has benefits in terms of fire performance, with (often) no need to use added fire protection. Many forms of shallow floor construction inherently achieve composite interaction between the beams and slab, thereby enhancing structural efficiency.

A number of shallow floor solutions are available, including a range of rolled and fabricated options. Tata Steel produces the unique ASB - Asymmetric Slimflor Beam - this is used as part of Slimdek and is rolled with a wider bottom than top flange. This geometrical form is common to all shallow floor solutions, as it enables the slab to sit on the upper surface of the bottom flange - rather than the upper surface of the top flange as found with downstand beams. It is also possible to produce fabricated beams based on columns and hollow sections (SFB and RHSFB) with a plate welded to the lower flange to achieve this geometry. These are generically known as Slimflor.

Slimdek system

[top] Resources

[top] See also

[top] CPD